Балтийско-арктическое Межрегиональное Управление Федеральной Службы по надзору в сфере природопользования

2022 г.

ЗАЯВКА НА ПОЛУЧЕНИЕ КОМПЛЕКСНОГО ЭКОЛОГИЧЕСКОГО РАЗРЕШЕНИЯ

Акционерное общество «Сегежский целлюлозно-бумажный комбинат» организационно-правовая форма и наименование юридического лица или фамилия, имя, отчество (при наличии) индивидуального предпринимателя 186420, Россия, Республика Карелия, г. Сегежа, ул. Заводская, 1 адрес (место нахождения) юридического лица или место жительства индивидуального предпринимателя Основной государственный регистрационный юридического лица номер (индивидуального предпринимателя) 1021000921314 $(O\Gamma PH)$ Идентификационный номер налогоплатель-1006004155 щика (ИНН) Код основного вида экономической деятельности юридического лица (индивидуального предпринимателя) 17.11 (ОКВЭД): Наименование основного вида экономической деятельности юридического лица (индивидуального предпринимателя): Производство целлюлозы и древесной массы; Прошу выдать комплексное экологическое разрешение на объект, оказывающий негативное воздействие на окружающую сре-86-0110-000146-П, Промплощадка АО «Сегежский ЦБК». ду, код (при наличии) и наименование (при наличии) объекта, оказывающего негативное воздействие на окружающую среду Генеральный директор АО «Сегежский ЦБК» Поделенюк П.П.

СОДЕРЖАНИЕ ЗАЯВКИ

Раздел I. Общие сведения

1.1. Виды и объем производимой продукции (товара)

N	Наименование вида произ-	Код произ- водимой	Единица	Максималь- ный объем производимой продукции	Планируемый объем производства продукции (товара) по годам							
п/п	водимой продукции (то- вара)	продукции (товара)	измерения	(товара) со- гласно проект- ной докумен- тации	2022	2023	2024	2025	2026	2027	2028	2029
1	2	3	4	5	6	7	8	9	10	11	12	13
1	Производные продуктов растительного происхождения или смол прочие, не включенные в другие группировки (Мыло сульфатное)	20.14.71.190	тонн	46368	29171,8	29171,8	29171,8	29171,8	29171,8	29171,8	29171,8	29171,8
2	Масло талловое рафинированное и нерафинированное (Талловое масло сырое)	20.14.71.140	тонн	33000	13891,3	13891,3	13891,3	13891,3	13891,3	13891,3	13891,3	13891,3
	Переработка таллового масла		тонн	50000	30800	30800	30800	30800	30800	30800	30800	30800
3	Канифоль и кислоты смоляные и их производные (Канифоль)	20.14.71.171	тонн	*	7700,0	7700,0	7700,0	7700,0	7700,0	7700,0	7700,0	7700,0
4	Дистиллят жирнокислотный (Дистилированное талловое масло)	20.14.31.150	тонн	*	5236,0	5236,0	5236,0	5236,0	5236,0	5236,0	5236,0	5236,0
5	Кислоты жирные таллового масла (Жирные кислоты)	20.14.31.130	тонн	*	4004,0	4004,0	4004,0	4004,0	4004,0	4004,0	4004,0	4004,0
6	Пеки растительные, пек пивоваренный и аналогичные продукты на основе канифоли, смоляных кислот или растительного пека (Пек)	20.14.71.185	тонн	*	12628,0	12628,0	12628,0	12628,0	12628,0	12628,0	12628,0	12628,0

7	Скипидар сульфатный (Скипидар)	20.14.71.153	тонн	835	767,0	767,0	767,0	767,0	767,0	767,0	767,0	767,0
8	Целлюлоза	17.11	тыс. тонн	414	394,7	394,7	394,7	394,7	394,7	394,7	394,7	394,7
9	Бумага и картон (Выработка бумаги (валовый выпуск)	17.12	тыс. тонн	390	377,9	377,9	377,9	377,9	377,9	377,9	377,9	377,9

k

1.2. Информация об использовании сырья

N	Наименование сы-		Единица	Максимальный		Плани	руемый	объем исп	ользовани	я сырья п	о годам	
п/п	рья	Код сырья	измерения	объем используе- мого сырья в год	2022	2023	2024	2025	2026	2027	2028	2029
1	2	3	4	5	6	7	8	9	10	11	12	13
1	Лесоматериалы круглые хвойных пород для производства целлюлозы и древесной массы (балансы) (Древесное сырье на варку целлюлозы в пересчете на балансы, окоренные 1-3 сорта)	02.20.11.130	тыс. пл. м ³	1623,3	1623,3	1623,3	1623,3	1623,3	1623,3	1623,3	1623,3	1623,3
2	Щепа технологиче- ская (Привозная щепа)	16.10.23.111	тыс. пл. м ³	408,4	408,4	408,4	408,4	408,4	408,4	408,4	408,4	408,4
3	Древесина топливная (Покупное топливное сырье)	02.20.14	тыс. пл. м ³	467,0	467,0	467,0	467,0	467,0	467,0	467,0	467,0	467,0

1.3. Информация об использовании воды

N	Максималы ство использ		Источник водо- снабжения		Π л	анируемое и	спользовани	е воды по го	дам		
п/п	куб. м/сут.	тыс. куб. м/год		2022	2023	2024	2025	2026	2027	2028	2029
1	2	3	4	5	6	7	8	9	10	11	12

1	117433,668	42863,289	река Сегежа (во- дозабор № 1 и №2)	42863,289	42863,289	42863,289	42863,289	42863,289	42863,289	42863,289	42863,289
---	------------	-----------	--	-----------	-----------	-----------	-----------	-----------	-----------	-----------	-----------

1.4. Информация об использовании электрической энергии

N п/п	Единица измерения	Максимальное количество по- требляемой электрической энергии в год	2022				стрической эне	-		2020
		эпергии в год	2022	2023	2024	2025	2026	2027	2028	2029
1	2	3	4	5	6	7	8	9	10	11
1	млн.кВт	402	402	400	400	400	400	400	400	400

1.5. Информация об использовании тепловой энергии

N	Вид тепловои	Единица измере-	Максимальное использование		План	ируемое исп	ользование	тепловой эн	ергии по год	цам	
п/п	энергии	ния	тепловой энер- гии в год	2021	2022	2023	2024	2025	2026	2027	2028
1	2	3	4	5	6	7	8	9	10	11	12
1	Пар, брутто	Гкал	2228563	2228563	2228563	2228563	2228563	2228563	2228563	2228563	2228563
2	Пар (отпуск на производство), нетто	Гкал	1839701	1839701	1839701	1839701	1839701	1839701	1839701	1839701	1839701
3	Пар (ГВС на сторону)	Гкал	224115	224115	224115	224115	224115	224115	224115	224115	224115

1.6. Сведения об авариях и инцидентах, повлекших негативное воздействие на окружающую среду, произошедших за 2015- 2021 годы

1.6.1. Сведения об авариях, повлекших негативное воздействие на окружающую среду, произошедших за 2015 – 2021 годы

N п/п	Дата возникновения аварии	Дата ликвидации аварии	Размер вреда, причинен- ного окружающей среде, тыс. руб.	I — рии, причины возникнове-	Основные мероприятия по ликвидации аварии
1	2	3	4	5	6
	Аварии, повлекш	ие негативное воздейств	ие на окружающую среду, пр	роизошедшие за 2015-2021 годы, н	е зафиксированы

1.6.2. Сведения об инцидентах, повлекших негативное воздействие на окружающую среду, произошедших за 2015 - 2021 годы

N п/п	Дата возникнове- ния инцидента	Дата ликви- дации инци- дента	Размер вреда, причиненного окружающей среде, тыс. руб.	Краткая характеристика инцидента, причины, возникновения, последствия для компонентов природной среды	Основные мероприятия по ликви- дации инцидента
1	2	3	4	5	6
1	13.09.2020 в 21 час 25 мин.	15.09.2020	Не установлено	В помещении цеха ректификации таллового масла на трубопроводе (компенсаторе) от котла (парогенератора) ВОТ (высокотемпературный органический теплоноситель - динил) произошла разгерметизация вследствие износа данного труборовода. Основная часть динила была возвращена в производство посредством слива его в подземную емкость. Вытекший из места прорыва трубы теплоноситель самотеком попал в цеховую промышленную канализацию закрытого типа, далее был уловлен маслоуловителем и направлен в бак сбора продуктов №3115, откуда был перекачен в цистерну. 15.09.2020 произведена утилизация доставленных в цистерне на ТЭЦ-1 АО «Сегежский ЦБК» остатков динила путем сжигания. Инцидент, благодаря принятым мерам не оказал негативного воздействия на компоненты природной среды (воду, почву, воздух)	Сбор динила и утилизация путем сжигания. Произведена замена компенсаторов на трубопроводе динила (в январе 2021г. были заменены 12 шт. компенсаторов (металлорукавов) у испарителей, в ноябре 2021г. заменены еще 15 металлорукавов испарителей).

1.7. Информация о реализации программы повышения экологической эффективности

3.7		Срок вып	олнения	Объем фи-	Источники	Объем выполненных	Результат выпол-
N п/п	Наименование мероприятия	начало	конец	нансирова- ния, тыс. руб.	финансиро- вания	работ на дату пред- ставления заявки	ненных работ на дату представления заявки
1	2	3	4	5	6	7	8
1	Модернизация варочного цеха с внедрением НДТ (Модернизация 2-х ступенчатого DD- промывателя для снижения щелочности целлюлозной массы, подаваемой на бумажную фабрику)	III квартал 2021	IV квартал 2022	198000	CAPEX*	Заключен Договор «Техническое перевооружение линии волокна варочного цеха АО «Сегежский ЦБК» № СегЦБК-0117/-0001-2020 между СЦБК и ЗАО «ГИПРОБУМ»	Разработана рабочая документация, технология производсва и основной комплект рабочих чертежей, закуплено основное оборудование
	Реконструкция системы сбора щелокосодержащих вод после промывки СПП, стокера и центриклинеров в варочном цехе.	III квартал 2021	IV квартал 2022	500	OPEX*	Подана заявка на разработку проектной документации	Заявка в стадии про- работки
2	Установка новой линии участка каустизации соответствующей НДТ, в части улучшения промывки шлама от регенерации химикатов с дальнейшим обезвоживания шлама зелёного щёлока и выведением его из потока, поступающего на СБО взамен действующей	IV квартал 2021	IV квартал 2023 г.	1456000	CAPEX*	Разработан проект, за- куплено основное обо- рудование	Идет монтаж обору- дования
3	Установка системы очистки загрязненного конденсата фирмы Lundberg** (Эффективность БПК и ХПК не учитывается в ППЭЭ в связи с незначительностью эффекта для снижения сбросов)	IV квартал 2023	IV квартал 2025	388 000	CAPEX*	Мероприятие еще не реализовано — объема работ на дату предоставления заявки нет, производить работы планируется в соответствии с указанными сроками начиная с 4 квартал 2023 год	Результат будет до- стигнут не позднее 4 квартала 2025 года
4	Установка градирни с последующим возвратом охлажденной воды в производство. Закрытие выпуска №1	I квартал 2023	IV квартал 2026	61758	CAPEX*	Мероприятие еще не реализовано – объема работ на дату предоставления заявки нет, производить работы	Результат будет до- стигнут не позднее 4 квартала 2026 года

		Срок вып	олнения	Объем фи-	Источники	Объем выполненных	Результат выпол-
N п/п	Наименование мероприятия	начало	конец	нансирова- ния, тыс. руб.	финансиро- вания	работ на дату пред- ставления заявки	ненных работ на дату представления заявки
1	2	3	4	5	6	7	8
						планируется в соответ- ствии с указанными сроками начиная с 1 квартал 2023 год	
5	Реконструкция очистных сооружений с изменением технологии биологической очистки сточных вод на 2-х ступенчатый комбинированный BAS- процесс, объединяющий работу биореакторов-FlooBed и систему очистки активным илом в аэротанках	IV квартал 2023	IV квартал 2025	110000	CAPEX*	Мероприятие еще не реализовано — объема работ на дату предоставления заявки нет, производить работы планируется в соответствии с указанными сроками начиная с 4 квартал 2023 год	Результат будет до- стигнут не позднее 4 квартала 2025 года
6	Установка третьей ступени очистки сточной воды на СБО, включающей флотацию с обработкой сточных вод коагулянтом и фильтрацией на низконапорном фильтре с непрерывной промывкой.	III квартал 2023	IV квартал 2026	250000	CAPEX*	Мероприятие еще не реализовано — объема работ на дату предоставления заявки нет, производить работы планируется в соответствии с указанными сроками начиная с 3 квартала 2023 год	Результат будет до- стигнут не позднее 4 квартала 2026 года

^{*} OPEX - операционные затраты предприятия, которые компания несет в режиме дополнительных расходов на модернизацию. САРЕХ - это затрат предприятия затрат предприятия в основном единоразовые расходы, которые связаны с приобретением серьёзных активов.

Раздел II. Расчеты технологических нормативов

2.1. Сведения о применяемых на объекте, оказывающем негативное воздействие на окружающую среду (далее также - объект OHB) технологиях, показатели воздействия на окружающую среду которых не превышают установленные технологические показатели наилучших доступных технологий (далее - НДТ)

N n/n	Наименование информаци- онно-технического справоч- ника по наилучшим доступ- ным технологиям	Описание технологий, показатели воздействия на окружающую среду которых не превышают установленные технологические показатели НДТ	Технологические показатели НДТ	Реквизиты документа, которым установ-лены технологические показатели НДТ	Цели внедрения НДТ или иной технологии, показатели воздействия на окружающую среду которых не превышают установленные технологические показатели НДТ	Дата внедре- ния
1	2	3	4	5	6	7
1	Информационно-технический справочник по наилучшим доступным технологиям ИТС 1 — 2015 «Производство целлюлозы, древесной масс, бумаги, картона», утвержденный Приказом Росстандарта от 15 декабря 2015г. № 1571	НДТ-13. Снижение запаха, выбросов высококон- центрированных (ВК) и низко концентрированных (НК) дурнопахнущих газов путем сбора ВК и НК дурнопахнущих газов от всех технологических про- цессов. Альтернативой сжиганию являются щелочные скруббера (п.4.1.14 ИТС 1 – 2015)) Для снижения запаха от выбросов дурнопахнущих газов путем абсорбции щелочью установлены скрубберные установки: 1. Скруббер Имантра-Вентури» ИРП 1, 2, 3 2. Скруббер «Варкаус-Вентури» - установка по очистке дымовых газов и пыли после электрофильтров СРК-2; СРК-3; СРК-4.	Сероводород, метилмеркаптан, диметилсудьфид — суммарно 0,25-1,00 кг/т	Приказ Минприроды №579 от 27.08.2019 г.	Снижение негативного воздействия на окружающую среду	1967 г. 1975 г.

_			,	
			 Установка очистки и утилизации парогазовых выбросов от растворителя плава СРК-2 (УУПГВ-2) Установка очистки и утилизации парогазовых выбросов от растворителя плава СРК-3 (УУПГВ-3) Установка очистки и утилизации парогазовых выбросов от растворителя плава СРК-4 (УУПГВ-4) Установка очистки дурнопахнущих газов от реактора разложения сульфатного мыла; модернизация установкии Насадочный скруббер бункера щепы и терпентинного конденсатора варочной установки № 4 	2000 г. 2003 г. 2005 г. 1990г.; 2001г. 2004 г.
			8. Пуск концентраторов черного щелока 9. Изменение схемы СРК (убраны каскадные испарители на 2, 3, 4 СРК	2000, 2005r.; 2008r.
	2	Информационно-технический справочник по наилучшим доступным технологиям ИТС 1 — 2015 «Производство целлюлозы, древесной масс, бумаги, картона», утвержденный Приказом Росстандарта от 15 декабря 2015г. № 1571	НДТ-14. Снижение выбросов SO2 и CBC из регенерационного котла использует НДТ Пуск концентраторов черного щелока после выпарных станций для доупаривания черного щелока до концентрации не менее 70% а.с.в. дало возможность убрать из технологической схемы СРК каскадные испарители, при этом произошло значительное снижение выбросов SO2 и CBC	Пуск концентраторв 2000г. изменение а схемы СРК-2 — 2000 г. СРК-3 —2008г. СРК-4 -2005 г.

2.2. Расчеты технологических нормативов выбросов

2.2.1. Сведения о стационарных источниках, входящих в состав объекта ОНВ, для которых установлены технологические показатели выбросов НДТ

N п/п	Наименование стационарного источ- ника (их совокупности)	Количество стацио- нарных источников (их совокупности), входящих в состав объекта ОНВ	Количество загрязняющих веществ, для которых установлены технологические показатели выбросов НДТ	Примечание
1	2	3	4	5
1	1201 Циклон системы пневмотранспортера	1	3	
2	1202 Кондесатор бункера щепы, терпентинный кондесатор выход	1	3	
3	1203 Промыватель сучков, бак отходов	1	3	
4	1204 Вентиляция транспортера подачи щепы	1	3	
5	1205 Промывная установка	1	3	
6	1206 Общеобменная вентиляция промышленного отдела на отметке 0.0	1	3	
7	1207 Вентиляция на отметке 10.0м	1	3	
8	1208 Вентиляция на отметке 10.0м	1	3	
9	1209 Вентиляция на отметке 10.0м	1	3	
10	1210 Вентиляция на отметке 10.0м	1	3	
11	1211 Циклон пеносборник	1	3	
12	1212 Вентиляция (зона щелокоподогревателя)	1	3	
13	1213 Вентиляция (зона щелокоподогревателя)	1	3	
14	1214 Вентиляция (зона варочного котла)	1	3	
15	1215 Вентиляция (зона варочного котла)	1	3	
16	1216 Вентиляция (зона варочного котла)	1	3	
17	1217 Вентиляция (зона варочного котла)	1	3	
18	2101 Баки плот. ч/щ	1	3	
19	2201 Вентиляция в/ст №3	1	2	
20	2202 Вентиляция в/ст №3	1	2	
21	2203 Вентиляция в/ст №3	1	2	
22	2204 Вентиляция в/ст №3	1	2	
23	2205 Вентиляция в/ст №3	1	2	

24 2206 Вентиляция в/ст №3 1 2 25 2207 Вентиляция помещения в/ст №1,2 1 2 26 2208 Вентиляция помещения в/ст №1,2 1 2 27 2401 ИРП-1 скруббер 1 1 28 2402 ИРП-2 скруббер 1 1 29 2403 ИРП-3 скруббер 1 1 30 4101 Реактор разложения сульфатного мыла скруббер 1 3 31 4102 Вентиляция лаборатории В-45 1 2 32 4103 Вентиляция В-46 1 этаж 1 2 33 4104 Вентиляция В-41 5 этаж 1 2 34 4105 Вентиляция В-43 4 этаж 1 2	
26 2208 Вентиляция помещения в/ст №1,2 1 2 27 2401 ИРП-1 скруббер 1 1 28 2402 ИРП-2 скруббер 1 1 29 2403 ИРП-3 скруббер 1 1 30 4101 Реактор разложения сульфатного мыла скруббер 1 3 31 4102 Вентиляция лаборатории В-45 1 2 32 4103 Вентиляция В-46 1 этаж 1 2 33 4104 Вентиляция В-41 5 этаж 1 2	
27 2401 ИРП-1 скруббер 1 1 28 2402 ИРП-2 скруббер 1 1 29 2403 ИРП-3 скруббер 1 1 30 4101 Реактор разложения сульфатного мыла скруббер 1 3 31 4102 Вентиляция лаборатории В-45 1 2 32 4103 Вентиляция В-46 1 этаж 1 2 33 4104 Вентиляция В-41 5 этаж 1 2	
28 2402 ИРП-2 скруббер 1 1 29 2403 ИРП-3 скруббер 1 1 30 4101 Реактор разложения сульфатного мыла скруббер 1 3 31 4102 Вентиляция лаборатории В-45 1 2 32 4103 Вентиляция В-46 1 этаж 1 2 33 4104 Вентиляция В-41 5 этаж 1 2	
29 2403 ИРП-3 скруббер 1 1 30 4101 Реактор разложения сульфатного мыла скруббер 1 3 31 4102 Вентиляция лаборатории В-45 1 2 32 4103 Вентиляция В-46 1 этаж 1 2 33 4104 Вентиляция В-41 5 этаж 1 2	
30 4101 Реактор разложения сульфатного мыла скруббер 1 3 31 4102 Вентиляция лаборатории В-45 1 2 32 4103 Вентиляция В-46 1 этаж 1 2 33 4104 Вентиляция В-41 5 этаж 1 2	
30 мыла скруббер 1 3 31 4102 Вентиляция лаборатории В-45 1 2 32 4103 Вентиляция В-46 1 этаж 1 2 33 4104 Вентиляция В-41 5 этаж 1 2	
32 4103 Вентиляция В-46 1 этаж 1 2 33 4104 Вентиляция В-41 5 этаж 1 2	
33 4104 Вентиляция В-41 5 этаж 1 2	
34 4105 Вентиляция В-43 4 этаж 1 2	
35 4106 Вентиляция В-48 2 этаж	
36 4107 Бак мыла №5 1 3	
37 4108 Бак мыла ч/щ №1 1 3	
38 4109 Бак мыла ч/щ №2 1 3	
39 4110 Бак мыла ч/щ №3 1 3	
40 4111 Бак мыла ч/щ №4 1 3	
41 3001 СРК-2,3,4 скрубберная установка 1 1	
42 3002 Растворитель плава СРК-2 1 1	
43 3003 Растворитель плава СРК-2 1 1 1	
44 3004 Растворитель плава СРК-3 1 1	
45 3005 Растворитель плава СРК-3 1 1	
46 3006 Растворитель плава СРК-4 1	
47 3007 Растворитель плава СРК-4 1 1	
48 5005 Резервуары c мазутом 1 1	
49 4201 Труба котла сжигания отходов 1 3	
50 6305 Резервуары 1 1	
51 6307 TPK 1 1	
52 9002 Первичный отстойник 1 2	
53 9003 Первичный отстойник 1 2	
54 9004 Первичный отстойник 1 2	
55 9006 Первичный отстойник 1 2	
56 9007 Вторичный отстойник 1 2	

57	9008 Вторичный отстойник	1	2	
58	9010 Илонакопитель	1	2	
59	9013 Преаэратр аэротенки	1	2	
60	9014 Преаэратр аэротенки	1	2	
61	9015 Осадкоуплотнитель	1	2	

2.2.2. Показатели для расчета технологических нормативов выбросов 2022 год

N п/п	П Характеристика стац во Наименование	_	супности)		Загрязняющее ве	ещество		логический пока- затель НДТ	показ нарно	ологический сатель стацио- ого источника овокупности)	газоі смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	N	Т ощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед.	Вели чина		опасно- сти	изм.		изм.		изм.			нарному источнику (их совокупности)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
			т/год	0,009170	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25-1,00	Кг/т						
1	1201 Циклон системы пневмотранспортера	1		0,035640	Диметилсульфид	4				0,000118316	-	-	-	0,0467	
				0,000520	Метантиол (Метил- меркаптан)	4									
	1202 Кондесатор бун-		т/год	0,021382	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25-1,00	Кг/т						
2	кера щепы, терпентинный кондесатор	1		25,449500	Диметилсульфид	4				0,066910408	-	-	-	26,40954	
	выход			0,164168	Метантиол (Метил- меркаптан)	4									
			т/год	0,000740	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т		-	-	-	0,724713	81,88497
3	1203 Промыватель сучков, бак отходов	1		0,701730	Диметилсульфид	4				0,001836111					
				0,000990	Метантиол (Метил- меркаптан)	4									
	1204 Вентиляция		т/год	0,663609	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т		-	-	-	10,39439	
4	транспортера подачи	1		9,358240	Диметилсульфид	4				0,026334914					
	щепы			0,067715	Метантиол (Метил- меркаптан)	4									
			т/год	0,003140	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					3,830092	
5	1205 Промывная установка	1		3,713230	Диметилсульфид	4				0,009703804	-	-	-		
				0,001400	Метантиол (Метил- меркаптан)	4									

N п/п	Характеристика стац во	ционарно купності		чника (их со-	Загрязняющее ве	щество		логический пока- затель НДТ	пока: нарн	нологический затель стацио- ого источника овокупности)	газоі смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	N	Г ощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед.	Вели чина		опасно- сти	изм.		изм.		изм.			нарному источнику (их совокупности)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	1206 Общеобменная		т/год	0,003221	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					3,924401	
6	вентиляция промышленного отдела на от-	1		3,804661	Диметилсульфид	4				0,009942745	-	-	-		
	метке 0.0			0,001432	Метантиол (Метил- меркаптан)	4									
			т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,033739	
7	1207 Вентиляция на отметке 10.0м	1		0,018800	Диметилсульфид	4				8,54812E-05	-	-	-		81,88497
				0,001470	Метантиол (Метил- меркаптан)	4									
			т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,033739	
8	1208 Вентиляция на отметке 10.0м	1		0,018800	Диметилсульфид	4				8,54812E-05	-	-	-		
				0,001470	Метантиол (Метил- меркаптан)	4									
			т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,033739	
9	1209 Вентиляция на отметке 10.0м	1		0,018800	Диметилсульфид	4				8,54812E-05	-	-	-		
				0,001470	Метантиол (Метил- меркаптан)	4									
			т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,033739	
10	1210 Вентиляция на отметке 10.0м	1		0,018800	Диметилсульфид	4				8,54812E-05	-	-	-		
				0,001470	Метантиол (Метил- меркаптан)	4									
11	1211 Циклон пено- сборник	1	т/год	0,008920	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,03384522	-	-	-	13,358708	

N п/п	Характеристика стац во	ционарно окупності		чника (их со-	Загрязняющее ве	ещество		элогический пока- затель НДТ	пока: нарн	нологический ватель стацио- ого источника овокупности)	газов смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во источ- ников	Ед.	ощность Вели чина	Наименование	Класс опасно- сти	Ед. изм.	Величина	Ед. изм.	Величина	Ед.	Величина	выброса, час/год	по стацио- нарному ис- точнику (их	по ОНВ в целом
			изм.											совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
				12,921980	Диметилсульфид	4									
				0,036050	Метантиол (Метил- меркаптан)	4									
	1212 Вентиляция		т/год	0,030760	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,086888	
12	(зона целокоподогревателя	1		0,051100	Диметилсульфид	4				0,000220137	-	-	-		
)			0,002480	Метантиол (Метил- меркаптан)	4									81,88497
	1213 Вентиляция	1	т/год	0,030760	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,086888	
13	(зона щелокоподогревателя	1		0,051100	Диметилсульфид	4				0,000220137	-	-	-		
)	я 1		0,002480	Метантиол (Метил- меркаптан)	4									
	1214 Вентиляция		т/год	0,023538	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,063875	
14	(зона варочного	1		0,035594	Диметилсульфид	4				0,000161832	-	-	-		
	котла)			0,002870	Метантиол (Метил- меркаптан)	4									
	1015 D		т/год	0,023538	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,063875	
15	1215 Вентиляция (зона варочного	1		0,035594	Диметилсульфид	4				0,000161832	_	-	-		
	котла)			0,002870	Метантиол (Метил- меркаптан)	4	-								
16	1216 Вентиляция (зона варочного	1	т/год	0,023538	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000161832	_	_	-	0,063875	
	котла)			0,035594	Диметилсульфид	4									

N п/п	Характеристика стац	ционарно окупності		чника (их со-	Загрязняющее ве	щество		ологический пока- затель НДТ	показ нарн	нологический ватель стацио- ого источника овокупности)	газов смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во источ-		ощность	Наименование	Класс опасно-	Ед. изм.	Величина	Ед. изм.	Величина	Ед. изм.	Величина	выброса, час/год	по стацио- нарному ис-	по ОНВ в целом
		ников	Ед. изм.	Вели чина		сти								точнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
				0,002870	Метантиол (Метил- меркаптан)	4									
	1217 Вентиляция		т/год	0,023538	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,063875	
17	(зона варочного	1		0,035594	Диметилсульфид	4				0,000161832	-	-	-		
	котла)			0,002870	Метантиол (Метил- меркаптан)	4									81,88497
			т/год	0,039597	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,083269	
18	2101 Баки плот. ч/щ	1		0,037148	Диметилсульфид	4				0,000210968	-	-	-		
				0,004082	Метантиол (Метил- меркаптан)	4									
19	2201 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	_	-	-	0,033572	
	№3			0,018122	Диметилсульфид	4									
20	2202 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	_	-	-	0,033572	
	№3			0,018122	Диметилсульфид	4									
21	2203 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	_	-	-	0,033572	
	№3	_		0,018122	Диметилсульфид	4									
22	2204 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	_	-	-	0,033572	
	№ 3			0,018122	Диметилсульфид	4									
23	2205 Вентиляция в/ст №3	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	-	-	-	0,033572	

N п/п	Характеристика стан	ционарно окупності		чника (их со-	Загрязняющее ве	ещество		ологический пока- затель НДТ	пока: нарн	нологический ватель стацио- ого источника овокупности)	газол смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	M	Іощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед. изм.	Вели чина		опасно- сти	изм.		изм.		изм.			нарному источнику (их совокупности)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
				0,018122	Диметилсульфид	4									
24	2206 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	_	_	_	0,033572	
21	№3	1		0,018122	Диметилсульфид	4									
25	2207 Вентиляция	1	т/год	0,015245	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	9,2847E-05	_	-	-	0,036647	
	помещения в/ст №1,2	_		0,020327	Диметилсульфид	4	=								81,88497
26	2208 Вентиляция по-	1	т/год	0,014920	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	9,08581E-05	_	-	-	0,035862	
	мещения в/ст №1,2			0,019890	Диметилсульфид	4									
27	2401 ИРП-1 скруббер	1	т/год	3,005676	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,007845158				3,096484	
28	2402 ИРП-2 скруббер	1	т/год	8,523438	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,022247146	-	-	-	8,780949	
29	2403 ИРП-3 скруббер	1	т/год	1,837487	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,004796051				1,893001	
			т/год	4,657868	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					6,672103	
30	4101 Реактор разложения сульфатного мыла скруббер	1		0,724277	Диметилсульфид	4	-			0,016904238	-	-	-		
	manu capy coop			1,094291	Метантиол (Метил- меркаптан)	4	-								
31	4102 Вентиляция	1	т/год	0,034600	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000110825				0,043743	
31	лаборатории В-45	1		0,007860	Диметилсульфид	4	-				-	-	-		
32	4103 Вентиляция В- 46 1 этаж	1	т/год	0,142500	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,00065091				0,256914	

N п/п	Характеристика ста	ционарно экупності		очника (их со-	Загрязняющее ве	ещество		логический пока- затель НДТ	пока: нарн	нологический затель стацио- ого источника овокупности)	газол смеси	од (объем) воздушной и источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	M	Іощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед.	Вели чина		опасно- сти	изм.		изм.		изм.			нарному источнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
				0,106880	Диметилсульфид	4									
33	4104 Вентиляция В-	1	т/год	0,023718	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	6,8646E-05	_	_	_	0,027095	
	41 5 этаж			0,002582	Диметилсульфид	4									
34	4105 Вентиляция В-	1	т/год	0,089880	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000273436				0,107925	
	43 4 этаж			0,014880	Диметилсульфид	4					-	-	-		
35	4106 Вентиляция В-	1	т/год	0,108620	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000485533				0,191640	
	48 2 этаж			0,077400	Диметилсульфид	4									81,88497
			т/год	0,000420	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,025457	
36	4107 Бак мыла №5	1		0,024220	Диметилсульфид	4				6,44959E-05	-	-	-		
				0,000070	Метантиол (Метил- меркаптан)	4	-								
			т/год	0,000850	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,013856	
37	4108 Бак мыла ч/щ №1	1		0,012480	Диметилсульфид	4				3,5106E-05	-	-	-		
				0,000120	Метантиол (Метил- меркаптан)	4									
			т/год	0,000850	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,013856	
38	4109 Бак мыла ч/щ №2	1		0,012480	Диметилсульфид	4				3,5106E-05	-	-	-		
		1		0,000120	Метантиол (Метил- меркаптан)	4									
39	4110 Бак мыла ч/щ	1	т/год	0,000850	Дигидросульфид	2	Кг/т	Суммарно 0,25-	Кг/т	3,59413E-05	-	-	-	0,014186	

N п/п		-	монарного источника (их со- купности)		Загрязняющее ве	ещество		ологический пока- затель НДТ	пока: нарн	нологический затель стацио- ого источника совокупности)	газов смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во источ- ников	Ед. изм.	Іощность Вели чина	Наименование	Класс опасно- сти	Ед. изм.	Величина	Ед. изм.	Величина	Ед. изм.	Величина	выброса, час/год	по стацио- нарному ис- точнику (их совокупно- сти)	по ОНВ в целом
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	№3				(Сероводород)			1,00							
				0,012800	Диметилсульфид	4									
				0,000120	Метантиол (Метил- меркаптан)	4									
			т/год	0,000850	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,013856	
40	4111 Бак мыла ч/щ №4	1		0,012480	Диметилсульфид	4				3,5106E-05	-	-	-		81,88497
				0,000120	Метантиол (Метил- меркаптан)	4									
41	3001 СРК-2,3,4 скрубберная установка	1	т/год	0,456135	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,001190564	-	-	-	0,469916	
42	3002 Растворитель плава СРК-2	1	т/год	0,042971	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000112159				0,044269	
43	3003 Растворитель плава СРК-2	1	т/год	0,034284	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,94852E-05				0,035320	
44	3004 Растворитель плава СРК-3	1	т/год	0,045350	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000118369	-	-	-	0,046720	
45	3005 Растворитель плава СРК-3	1	т/год	0,031109	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,1198E-05	-	-	-	0,032049	
46	3006 Растворитель плава СРК-4	1	т/год	0,021451	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	5,59896E-05				0,022099	
47	3007 Растворитель плава СРК-4	1	т/год	0,015951	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	4,16339E-05				0,016433	

N п/п	П Характеристика ста в Наименование	ционарно окупності		очника (их со-	Загрязняющее ве	щество		логический пока- затель НДТ	пока: нарн	нологический затель стацио- ого источника совокупности)	газоі смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	N.	Іощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ-	Ед.	Вели чина		опасно-	изм.		изм.		изм.			нарному источнику (их совокупности)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
48	5005 Резервуары с мазутом	1	т/год	0,002313	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	6,03719E-06	-	-	-	0,002383	
	4201 Труба		т/год	0,030190	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,060414	81,88497
49	котла сжигания	1		0,014226	Диметилсульфид	4				0,000153062	_	-	-		
	отходов			0,014226	Метантиол (Метил- меркаптан)	4	-								
50	6305 Резерву- ары	1	т/год	0,000091	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2,3752E-07	-	-	-	0,000094	
51	6307 TPK	1	т/год	0,000003	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	7,83034E-09	-	-	-	0,000003	
50	9002 Первичный	1	т/год т/год	0,037590	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000100568				0,039694	
52	отстойник	1		0,000940	Метантиол (Метил- меркаптан)	4					-	-	-		
52	9003 Первичный	1	т/год т/год	0,075180	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000201133				0,079387	
53	отстойник	1		0,001879	Метантиол (Метил- меркаптан)	4					-	-	-		
- A	9004 Первичный		т/год т/год	0,053230	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,00014241				0,056209	
54	отстойник			0,001331	Метантиол (Метил- меркаптан)	4				,	-	-	-		
<i></i>	9006 Первичный		т/год т/год	0,009270	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2,51485E-05				0,009926	
55	9006 Первичный отстойник	1		0,000365	Метантиол (Метил- меркаптан)	4				,	-	-	-		
56	9007 Вторичный	1	т/год	0,009100	Дигидросульфид	2	Кг/т	Суммарно 0,25-	Кг/т	2,46891E-05	-	-	-	0,009745	

N п/п	Характеристика став	ционарно окупності		очника (их со-	Загрязняющее ве	щество		логический пока- затель НДТ	показ нарн	нологический затель стацио- ого источника совокупности)	газоі смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во источ- ников	М Ед. изм.	Іощность Вели чина	Наименование	Класс опасно- сти	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио- нарному ис- точнику (их совокупно- сти)	по ОНВ в целом
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	отстойник		т/год		(Сероводород)			1,00							
				0,000359	Метантиол (Метил- меркаптан)	4									81,88497
57	9008 Вторичный	1	т/год т/год	0,011320	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	3,07106E-05				0,012121	
57	отстойник	I		0,000446	Метантиол (Метил- меркаптан)	4					-	-	-		
58	9010 Илонакопитель	1	т/год т/год	0,072640	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000198097	_	_		0,078189	
38	9010 FEIOHAROHITESIS	1		0,003256	Метантиол (Метил- меркаптан)	4					-	-	_		
59	9013 Преаэратр	1	т/год т/год	0,017630	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	4,78852E-05		_	_	0,018900	
	аэротенки	1		0,000716	Метантиол (Метил- меркаптан)	4					_	-	_		
60	9014 Преаэратр	1	т/год т/год	0,023340	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	6,33945E-05	_			0,025022	
00	аэротенки	1		0,000948	Метантиол (Метил- меркаптан)	4					-	-	-		
			т/год	0,061440	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,065026	81,88497
61	9015 Осадкоуплотнитель	1		0,001679	Метантиол (Метил- меркаптан)	4				0,000164748	-	-	-		

N п/п	Характеристика стац	ионарно купності		очника (их со-	Загрязняющее ве	щество		логический пока- затель НДТ	показ нарн	нологический затель стацио- ого источника совокупности)	газоі смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	N	Іощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед.	Вели чина		опасно- сти	изм.		изм.		изм.			нарному источнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
			т/год	0,009170	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25-1,00	Кг/т						
1	1201 Циклон системы пневмотранспортера	1		0,035640	Диметилсульфид	4				0,000118316	_	-	-	0,0467	
				0,000520	Метантиол (Метил- меркаптан)	4									
	1202 Кондесатор бун-		т/год	0,021382	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25-1,00	Кг/т	0.066010400					
2	кера щепы, терпен- тинный кондесатор	1		25,449500	Диметилсульфид	4				0,066910408	_	-	-	26,40954	
	выход			0,164168	Метантиол (Метил- меркаптан)	4									
			т/год	0,000740	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т		-	-	-	0,724713	
3	1203 Промыватель сучков, бак отходов	1		0,701730	Диметилсульфид	4				0,001836111					81,88497
	•			0,000990	Метантиол (Метил- меркаптан)	4									
	1004 D		т/год	0,663609	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.00(001011	-	-	-	10,39439	
4	1204 Вентиляция транспортера подачи	1		9,358240	Диметилсульфид	4				0,026334914					
	щепы			0,067715	Метантиол (Метил- меркаптан)	4									
			т/год	0,003140	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.000702804				3,830092	
5	1205 Промывная установка	1		3,713230	Диметилсульфид	4				0,009703804	-	-	-		
	,			0,001400	Метантиол (Метил- меркаптан)	4									

N п/п	Характеристика стац	(ионарно купності		чника (их со-	Загрязняющее ве	щество		логический пока- затель НДТ	пока: нарн	нологический затель стацио- ого источника совокупности)	газоі смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	N	Іощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед.	Вели чина		опасно-	изм.		изм.		изм.			нарному источнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
			т/год	0,003221	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					3,924401	
6	1206 Общеобменная вентиляция промышленного отдела на отметке 0.0	1		3,804661	Диметилсульфид	4	-			0,009942745	-	-	-		
	Metre 0.0			0,001432	Метантиол (Метил- меркаптан)	4	-								
			т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,54812E-05				0,033739	
7	1207 Вентиляция на отметке 10.0м	1		0,018800	Диметилсульфид	4				0,34012E-03	_	-	-		
				0,001470	Метантиол (Метил- меркаптан)	4									
			т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.7.40407-0.7				0,033739	
8	1208 Вентиляция на отметке 10.0м	1		0,018800	Диметилсульфид	4				8,54812E-05	_	-	-		81,88497
				0,001470	Метантиол (Метил- меркаптан)	4	-								
			т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,033739	
9	1209 Вентиляция на отметке 10.0м	1		0,018800	Диметилсульфид	4				8,54812E-05	-	-	-		
	ormorne rotom			0,001470	Метантиол (Метил- меркаптан)	4									
			т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,033739	
10	1210 Вентиляция на отметке 10.0м	1		0,018800	Диметилсульфид	4				8,54812E-05	-	-	-		
				0,001470	Метантиол (Метил- меркаптан)	4	-								

N п/п	Характеристика стац	(ионарно купності		очника (их со-	Загрязняющее ве	щество		ологический пока- затель НДТ	показ нарн	нологический ватель стацио- ого источника овокупности)	газоі смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	N.	Іощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед.	Вели чина		опасно-	изм.		изм.		изм.			нарному источнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
			т/год	0,008920	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,03384522				13,358708	
11	1211 Циклон пено- сборник	1		12,921980	Диметилсульфид	4				0,03364322	_	-	-		
	1			0,036050	Метантиол (Метил- меркаптан)	4									
	1212 Вентиляция		т/год	0,030760	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,086888	
12	(зона щелокоподогревателя	1		0,051100	Диметилсульфид	4				0,000220137	-	-	-		
)			0,002480	Метантиол (Метил- меркаптан)	4									
	1213 Вентиляция		т/год	0,030760	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,086888	
13	(зона щелокоподогревателя	1		0,051100	Диметилсульфид	4				0,000220137	-	-	-		81,88497
)			0,002480	Метантиол (Метил- меркаптан)	4									
	10115		т/год	0,023538	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,063875	
14	1214 Вентиляция (зона варочного	1		0,035594	Диметилсульфид	4				0,000161832	_	-	-		
	котла)			0,002870	Метантиол (Метил- меркаптан)	4									
			т/год	0,023538	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,063875	
15	1215 Вентиляция (зона варочного	1		0,035594	Диметилсульфид	4	1			0,000161832	-	-	-		
	котла)			0,002870	Метантиол (Метил- меркаптан)	4									

N п/п	Характеристика стаг во	ционарно окупності		чника (их со-	Загрязняющее ве	ещество		ологический пока- затель НДТ	пока нарн	нологический затель стацио- ого источника совокупности)	газоі смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	M	Іощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед. изм.	Вели чина		опасно- сти	изм.		изм.		изм.			нарному источнику (их совокупности)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
			т/год	0,023538	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,063875	
16	1216 Вентиляция (зона варочного	1		0,035594	Диметилсульфид	4	-			0,000161832	-	-	-		
	котла)			0,002870	Метантиол (Метил- меркаптан)	4									
	1217 D		т/год	0,023538	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.000161032				0,063875	
17	1217 Вентиляция (зона варочного	1		0,035594	Диметилсульфид	4				0,000161832	-	-	-		
	котла)			0,002870	Метантиол (Метил- меркаптан)	4									
			т/год	0,039597	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.000210070				0,083269	
18	2101 Баки плот. ч/щ	1		0,037148	Диметилсульфид	4	1			0,000210968	-	-	-		01 00 407
				0,004082	Метантиол (Метил- меркаптан)	4									81,88497
19	2201 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	_	-	-	0,033572	
	№3			0,018122	Диметилсульфид	4									
20	2202 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	_	-	-	0,033572	
	№3			0,018122	Диметилсульфид	4	1								
21	2203 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	_	-	-	0,033572	
	№3			0,018122	Диметилсульфид	4									
22	2204 Вентиляция в/ст №3	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	-	-	-	0,033572	

N п/п	Характеристика стап	ционарно купності		очника (их со-	Загрязняющее ве	ещество		ологический пока- затель НДТ	пока: нарн	нологический затель стацио- ого источника совокупности)	газол смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	N	Іощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед. изм.	Вели чина		опасно- сти	изм.		изм.		изм.			нарному источнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
				0,018122	Диметилсульфид	4									
23	2205 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	_	_	_	0,033572	
	№3			0,018122	Диметилсульфид	4									
24	2206 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	_	-	-	0,033572	
	№3			0,018122	Диметилсульфид	4									
25	2207 Вентиляция	1	т/год	0,015245	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	9,2847E-05	_	_	_	0,036647	
25	помещения в/ст №1,2	1		0,020327	Диметилсульфид	4					_		_		
26	2208 Вентиляция по-	1	т/год	0,014920	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	9,08581E-05				0,035862	81,88497
20	мещения в/ст №1,2	1		0,019890	Диметилсульфид	4					-	-	-		
27	2401 ИРП-1 скруббер	1	т/год	3,005676	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,007845158				3,096484	
28	2402 ИРП-2 скруббер	1	т/год	8,523438	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,022247146	-	-	-	8,780949	
29	2403 ИРП-3 скруббер	1	т/год	1,837487	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,004796051				1,893001	
			т/год	4,657868	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					6,672103	
30	4101 Реактор разло- жения сульфатного мыла скруббер	1		0,724277	Диметилсульфид	4				0,016904238	-	-	-		
	окру осер			1,094291	Метантиол (Метил- меркаптан)	4									

N п/п	Характеристика став	ционарно окупності		чника (их со-	Загрязняющее ве	щество		логический пока- затель НДТ	пока: нарн	нологический затель стацио- ого источника совокупности)	газон смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	N	Іощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед.	Вели чина		опасно- сти	изм.		изм.		изм.			нарному источнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
31	4102 Вентиляция	1	т/год	0,034600	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000110825				0,043743	
31	лаборатории В-45			0,007860	Диметилсульфид	4					-	-	-		
32	4103 Вентиляция В-	1	т/год	0,142500	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,00065091				0,256914	
	46 1 этаж			0,106880	Диметилсульфид	4									
33	4104 Вентиляция В-	1	т/год	0,023718	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	6,8646E-05	-	-	-	0,027095	
	41 5 этаж			0,002582	Диметилсульфид	4									81,88497
34	4105 Вентиляция В-	1	т/год	0,089880	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000273436				0,107925	01,00177
	43 4 этаж			0,014880	Диметилсульфид	4					-	-	-		
35	4106 Вентиляция В- 48 2 этаж	1	т/год	0,108620	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000485533				0,191640	
	48 2 Эгаж			0,077400	Диметилсульфид	4									
			т/год	0,000420	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	6,44959E-05				0,025457	
36	4107 Бак мыла №5	1		0,024220	Диметилсульфид	4				0,44939E-03	-	-	-		
				0,000070	Метантиол (Метил- меркаптан)	4									
			т/год	0,000850	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2.510/E-05				0,013856	
37	4108 Бак мыла ч/щ №1	1		0,012480	Диметилсульфид	4				3,5106E-05	-	-	-		
				0,000120	Метантиол (Метил- меркаптан)	4									
38	4109 Бак мыла ч/щ	1	т/год	0,000850	Дигидросульфид	2	Кг/т	Суммарно 0,25-	Кг/т		-	-	-		

N п/п	Характеристика стан	ционарно		очника (их со-	- Загрязняющее ве	ещество		ологический пока- затель НДТ	пока: нарн	нологический затель стацио- ого источника совокупности)	газо смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	N	Тощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед.	Вели чина		опасно- сти	изм.		изм.		изм.			нарному источнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	№ 2				(Сероводород)			1,00						0,013856	
				0,012480	Диметилсульфид	4				3,5106E-05					
				0,000120	Метантиол (Метил- меркаптан)	4									
			т/год	0,000850	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2.50412F 05				0,014186	81,88497
39	4110 Бак мыла ч/щ №3	1		0,012800	Диметилсульфид	4				3,59413E-05	-	-	-		
	V. _0			0,000120	Метантиол (Метил- меркаптан)	4									
			т/год	0,000850	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2.510/F 05				0,013856	
40	4111 Бак мыла ч/щ №4	1		0,012480	Диметилсульфид	4				3,5106E-05	-	-	-		
				0,000120	Метантиол (Метил- меркаптан)	4									
41	3001 СРК-2,3,4 скрубберная установка	1	т/год	0,456135	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,001190564	-	-	-	0,469916	
42	3002 Растворитель плава СРК-2	1	т/год	0,042971	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000112159				0,044269	
43	3003 Растворитель плава СРК-2	1	т/год	0,034284	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,94852E-05				0,035320	
44	3004 Растворитель плава СРК-3	1	т/год	0,045350	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000118369	-	-	-	0,046720	
45	3005 Растворитель плава СРК-3	1	т/год	0,031109	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,1198E-05	-	-	-	0,032049	

N п/п		Характеристика стационарного и вокупности) Наименование Кол-во источ-		чника (их со-	Загрязняющее ве	щество		логический пока- затель НДТ	показ нарн	нологический ватель стацио- ого источника овокупности)	газот смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование		N	Г ощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед.	Вели чина		опасно- сти	изм.		изм.		изм.			нарному источнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
46	3006 Растворитель плава СРК-4	1	т/год	0,021451	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	5,59896E-05				0,022099	
47	3007 Растворитель плава СРК-4	1	т/год	0,015951	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	4,16339E-05				0,016433	81,88497
48	5005 Резервуары с мазутом	1	т/год	0,002313	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	6,03719E-06	-	-	-	0,002383	
	4201 Труба		т/год	0,030190	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.000152062				0,060414	
49	котла сжигания	1		0,014226	Диметилсульфид	4				0,000153062	_	_	_		
	отходов			0,014226	Метантиол (Метил- меркаптан)	4									
50	6305 Резерву- ары	1	т/год	0,000091	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2,3752E-07	-	-	-	0,000094	
51	6307 TPK	1	т/год	0,000003	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	7,83034E-09	-	-	-	0,000003	
52	9002 Первичный	1	т/год т/год	0,037590	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000100568				0,039694	
52	отстойник			0,000940	Метантиол (Метил- меркаптан)	4					-	-	-		
52	9003 Первичный	1	т/год т/год	0,075180	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000201133				0,079387	
53	отстойник			0,001879	Метантиол (Метил- меркаптан)	4					-	-	-		
54	9004 Первичный	1	т/год т/год	0,053230	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,00014241				0,056209	
34	отстойник	1		0,001331	Метантиол (Метил- меркаптан)	4					-	-	-		81,88497

N п/п	Характеристика став	ционарно		очника (их со-	Загрязняющее ве	щество		логический пока- затель НДТ	показ нарн	нологический затель стацио- ого источника овокупности)	газот смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	M	Іощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед. изм.	Вели чина		опасно- сти	изм.		изм.		изм.			нарному источнику (их совокупности)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	9006 Первичный		т/год т/год	0,009270	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2,51485E-05				0,009926	
55	отстойник	1		0,000365	Метантиол (Метил- меркаптан)	4	-				-	-	-		
5.0	9007 Вторичный	1	т/год т/год	0,009100	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2,46891E-05				0,009745	
56	отстойник			0,000359	Метантиол (Метил- меркаптан)	4					-	-	-		
5.7	9008 Вторичный	1	т/год т/год	0,011320	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	3,07106E-05				0,012121	
57	отстойник			0,000446	Метантиол (Метил- меркаптан)	4					-	-	-		
5 0	0010 11		т/год т/год	0,072640	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000198097				0,078189	
58	9010 Илонакопитель			0,003256	Метантиол (Метил- меркаптан)	4					-	-	-		
5 0	9013 Преаэратр		т/год т/год	0,017630	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	4,78852E-05				0,018900	
59	аэротенки			0,000716	Метантиол (Метил- меркаптан)	4					-	-	-		
60	9014 Преаэратр		т/год т/год	0,023340	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	6,33945E-05				0,025022	81,88497
60	аэротенки	l l		0,000948	Метантиол (Метил- меркаптан)	4					-	-	-		
			т/год	0,061440	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000164748				0,065026	
61	9015 Осадкоуплотнитель	1		0,001679	Метантиол (Метил- меркаптан)	4				0,000107/40	-	-	-		

N п/п	Характеристика стат во	ционарно окупности		очника (их со-	Загрязняющее ве	щество		огический пока- ватель НДТ	показ нарно	ологический атель стацио- ого источника овокупности)	газон смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во источ- ников	Ед. изм.	Іощность Вели чина	Наименование	Класс опасно- сти	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио- нарному ис- точнику (их совокупно- сти)	по ОНВ в целом
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16

2024 год

N п/п	Характеристика стац во	ционарно купності		очника (их со-	Загрязняющее ве	щество		огический пока- атель НДТ	показ нарно	ологический затель стацио- эго источника овокупности)	газот смеси	од (объем) воздушной и источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	N	Г ощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед.	Вели чина		опасно-	изм.		изм.		изм.			нарному источнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
			т/год	0,009170	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25-1,00	Кг/т						
1	1201 Циклон системы пневмотранспортера	1		0,035640	Диметилсульфид	4				0,000118316	-	-	-	0,0467	
	пневмотранспортера			0,000520	Метантиол (Метил- меркаптан)	4									
	1202 Кондесатор бункера щепы, терпен-		т/год	0,021382	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25-1,00	Кг/т	0,066910408				26,40954	
2	тинный кондесатор выход	1		25,449500	Диметилсульфид	4					-	-	-		

N п/п	Характеристика стаг во	ционарно окупності		чника (их со-	- Загрязняющее вещество		Технологический пока- затель НДТ		Технологический показатель стационарного источника (их совокупности)		Расход (объем) газовоздушной смеси источника выбросов		Время ра- боты ис- точ- ника(ов)	Технологический норматив выброса, т/год	
	Наименование	Кол-во источ- ников	Ед. изм.	ощность Вели чина	Наименование	Класс опасно- сти	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио- нарному ис- точнику (их совокупно- сти)	по ОНВ в целом
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
				0,164168	Метантиол (Метил- меркаптан)	4									
			т/год	0,000740	Дигидросульфид (Сероводород)	2	Кг/т Суммарно 0,25- 1,00	Кг/т	0.001927111	-	-	-	0,724713		
3	1203 Промыватель сучков, бак отходов	1		0,701730	Диметилсульфид	4				0,001836111					81,88497
				0,000990	Метантиол (Метил- меркаптан)	4									
	1204 Вентиляция		т/год	0,663609	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.026224014	-	-	-	10,39439	
4	транспортера подачи	1		9,358240	Диметилсульфид	4				0,026334914					
	щепы			0,067715	Метантиол (Метил- меркаптан)	4									
			т/год	0,003140	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,009703804				3,830092	
5	1205 Промывная установка	1		3,713230	Диметилсульфид	4				0,009/03804	-	-	-		
	j			0,001400	Метантиол (Метил- меркаптан)	4									
	1206 Общеобменная		т/год	0,003221	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					3,924401	
6	вентиляция промыш-	1		3,804661	Диметилсульфид	4				0,009942745	_	_	-		
	ленного отдела на отметке 0.0			0,001432	Метантиол (Метил- меркаптан)	4									
7	1207 Вентиляция на	1	т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,54812E-05	_	_	_	0,033739	81,88497
	отметке 10.0м	_		0,018800	Диметилсульфид	4									

N п/п	Характеристика став	ционарно окупності		чника (их со-	- Загрязняющее вещество		Технологический пока- затель НДТ		Технологический показатель стацио- нарного источника (их совокупности)		Расход (объем) газовоздушной смеси источника выбросов		Время ра- боты ис- точ- ника(ов)	Технологический норматив выброса, т/год	
	Наименование	Кол-во источ- ников	Ед. изм.	Вели чина	Наименование	Класс опасно- сти	Ед.	Величина	Ед.	Величина	Ед. изм.	Величина	выброса, час/год	по стацио- нарному ис- точнику (их совокупно- сти)	по ОНВ в целом
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
				0,001470	Метантиол (Метил- меркаптан)	4									
			т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,033739	
8	1208 Вентиляция на отметке 10.0м	1		0,018800	Диметилсульфид	4	-			8,54812E-05	-	-	-		
				0,001470	Метантиол (Метил- меркаптан)	4									
			т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,033739	
9	1209 Вентиляция на отметке 10.0м	1		0,018800	Диметилсульфид	4				8,54812E-05	-	-	-		
				0,001470	Метантиол (Метил- меркаптан)	4									
			т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,033739	
10	1210 Вентиляция на отметке 10.0м	1		0,018800	Диметилсульфид	4				8,54812E-05	-	-	-		
				0,001470	Метантиол (Метил- меркаптан)	4									
			т/год	0,008920	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.02204522				13,358708	
11	1211 Циклон пено- сборник	1		12,921980	Диметилсульфид	4				0,03384522	-	-	-		
	_			0,036050	Метантиол (Метил- меркаптан)	4									
12	1212 Вентиляция (зона	1	т/год	0,030760	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000220137	_	-	-	0,086888	
	щелокоподогревателя			0,051100	Диметилсульфид	4									

N п/п		Характеристика стационарного источника (их со- вокупности)					тво Технологический пока- затель НДТ		показатель стацио-		Расход (объем) газовоздушной смеси источника выбросов		Время ра- боты ис- точ- ника(ов)	Технологический норматив выброса, т/год								
	Наименование	Кол-во источ- ников	М Ед. изм.	Іощность Вели чина	Наименование	Класс опасно- сти	Ед. изм.	Величина	Ед. изм.	Величина	Ед. изм.	Величина	выброса, час/год	по стацио- нарному ис- точнику (их совокупно-	по ОНВ в целом							
1	2	3	4		6	7	8	9	10	11	12	13	14	сти)	16							
)		-	0,002480	Метантиол (Метил- меркаптан)	4																
	1213 Вентиляция		т/год	0,030760	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.00000107				0,086888								
13	(зона щелокоподогревателя	1		0,051100	Диметилсульфид	4				0,000220137	-	-	-									
)				0,002480	Метантиол (Метил- меркаптан)	4	-								04 00 40=						
	1014 P		т/год	0,023538	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.0001/1000				0,063875	81,88497							
14	1214 Вентиляция (зона варочного	1		0,035594	Диметилсульфид	4				0,000161832	-	-	-									
	котла)			0,002870	70 Метантиол (Метил- меркаптан) 4																	
	1215 Daving	1								т/год	0,023538	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,063875	
15	1215 Вентиляция (зона варочного			0,035594	Диметилсульфид	4				0,000161832	-	-	-									
	котла)			0,002870	Метантиол (Метил- меркаптан)	4																
	121(D		т/год	0,023538	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.0001/1022				0,063875								
16	1216 Вентиляция (зона варочного котла)	1		0,035594	Диметилсульфид	4				0,000161832	-	-	-									
					0,002870	Метантиол (Метил- меркаптан)	4															
17	1217 Вентиляция (зона варочного	1	т/год	0,023538	Дигидросульфид (Сероводород)	2	Кг/т	т Суммарно 0,25- 1,00	Кг/т	0,000161832	-	-	-	0,063875								
	котла)			0,035594	Диметилсульфид	4																

N п/п	Характеристика став	ционарно окупност		очника (их со-	Загрязняющее ве	щество	о Технологический пока- затель НДТ		Технологический показатель стационарного источника (их совокупности)		Расход (объем) газовоздушной смеси источника выбросов		Время ра- боты ис- точ- ника(ов)	Технологический норматив выброса, т/год									
	Наименование	Кол-во источ-		Іощность	Наименование	Класс опасно-	Ед. изм.	Величина	Ед. изм.	Величина	Ед. изм.	Величина	выброса, час/год	по стацио-	· ·								
		ников	Ед. изм.	Вели чина		сти								точнику (их совокупно- сти)									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16								
				0,002870	Метантиол (Метил- меркаптан)	4																	
			т/год	0,039597	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,083269									
18	2101 Баки плот. ч/щ	1		0,037148	Диметилсульфид	4				0,000210968	-	-	-										
				0,004082	Метантиол (Метил- меркаптан)	4									81,88497								
19	2201 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	_	-	-	0,033572									
	№3			0,018122	Диметилсульфид	4																	
20	2202 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	_	-	-	0,033572									
	№3			0,018122	22 Диметилсульфид 4																		
21	2203 Вентиляция в/ст	1	1	1	1	1	1	1	1	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	_	-	_	0,033572	
	№3			0,018122	Диметилсульфид	4																	
22	2204 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	-	-	-	0,033572									
	№3			0,018122	Диметилсульфид	4																	
23	2205 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	_	-	-	0,033572									
	<u>№</u> 3			0,018122	Диметилсульфид	4																	
24	2206 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	-	-	-	0,033572									
	№3			0,018122	Диметилсульфид	4																	

N п/п		Характеристика стационарного источника (их со- вокупности)					затель НДТ по на		Технологический показатель стационарного источника (их совокупности)		Расход (объем) газовоздушной смеси источника выбросов		Время ра- боты ис- точ- ника(ов)	Технологический норматив выброса, т/год	
	Наименование	Кол-во источ-	N Ед.	Іощность Вели чина	Наименование	Класс опасно-	Ед. изм.	Величина	Ед. изм.	Величина	Ед. изм.	Величина	выброса, час/год	по стацио-	ζ
		ников	изм.	БСЛИ ЧИНА		сти								точнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
25	2207 Вентиляция	1	т/год	0,015245	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	9,2847E-05				0,036647	
23	помещения в/ст №1,2	1		0,020327	Диметилсульфид	4					-	-	-		
26	2208 Вентиляция по-	1	т/год	0,014920	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	9,08581E-05	05 0,	0,035862			
	мещения в/ст №1,2	_		0,019890	Диметилсульфид	4									81,88497
27	2401 ИРП-1 скруббер	1	т/год	3,005676	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,007845158				3,096484	
28	2402 ИРП-2 скруббер	1	т/год	8,523438	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,022247146	-	-	-	8,780949	
29	2403 ИРП-3 скруббер	1	т/год	1,837487	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,004796051				1,893001	
			т/год	4,657868	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					6,672103	
30	4101 Реактор разло- жения сульфатного мыла скруббер	1		0,724277	Диметилсульфид	4				0,016904238	-	-	-		
	13 1			1,094291	Метантиол (Метил- меркаптан)	4									
31	4102 Вентиляция	1	т/год	0,034600	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000110825				0,043743	
	лаборатории В-45	-		0,007860	Диметилсульфид	4					-	-	-		
32	4103 Вентиляция В-	1	т/год	0,142500	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,00065091				0,256914	
	46 1 этаж			0,106880	Диметилсульфид	4									
33	4104 Вентиляция В-	1	т/год	0,023718	Дигидросульфид	2	Кг/т	Суммарно 0,25-	Кг/т		-	-	-		

N п/п	Характеристика стаг во	ционарно экупності		очника (их со-	Загрязняющее ве	щество		ологический пока- затель НДТ	пока: нарн	нологический затель стацио- ого источника совокупности)	газог смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	N	Іощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед.	Вели чина		опасно- сти	изм.		изм.		изм.			нарному источнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	41 5 этаж				(Сероводород)			1,00		6,8646E-05				0,027095	
				0,002582	Диметилсульфид	4									
34	4105 Вентиляция В-	1	т/год	0,089880	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000273436				0,107925	
	43 4 этаж			0,014880	Диметилсульфид	4					-	-	-		01.00.407
35	4106 Вентиляция В-	1	т/год	0,108620	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000485533				0,191640	81,88497
	48 2 этаж			0,077400	Диметилсульфид	4									
			т/год	0,000420	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	6,44959E-05				0,025457	
36	4107 Бак мыла №5	1		0,024220	Диметилсульфид	4				0,44939E-03	-	-	-		
				0,000070	Метантиол (Метил- меркаптан)	4									
			т/год	0,000850	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2.510/E-05				0,013856	
37	4108 Бак мыла ч/щ №1	1		0,012480	Диметилсульфид	4				3,5106E-05	-	-	-		
				0,000120	Метантиол (Метил- меркаптан)	4									
			т/год	0,000850	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	3,5106E-05				0,013856	
38	4109 Бак мыла ч/щ №2	1		0,012480	Диметилсульфид	4				3,5100E-03	-	-	-		
				0,000120	Метантиол (Метил- меркаптан)	4									
39	4110 Бак мыла ч/щ	1	т/год	0,000850	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	3,59413E-05	-	-	-	0,014186	
	№3			0,012800	Диметилсульфид	4									

N п/п	Характеристика стан	ционарно		очника (их со-	Загрязняющее ве	ещество		логический пока- затель НДТ	пока нарн	нологический затель стацио- ого источника совокупности)	газоі смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	N	Т ощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед.	Вели чина		опасно-	изм.		изм.		изм.			нарному источнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
				0,000120	Метантиол (Метил- меркаптан)	4									
			т/год	0,000850	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	3,5106E-05				0,013856	
40	4111 Бак мыла ч/щ №4	1		0,012480	Диметилсульфид	4				3,5100E-03	-	-	-		81,88497
				0,000120	Метантиол (Метил- меркаптан)	4									
41	3001 СРК-2,3,4 скрубберная установка	1	т/год	0,456135	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,001190564	-	-	-	0,469916	
42	3002 Растворитель плава СРК-2	1	т/год	0,042971	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000112159				0,044269	
43	3003 Растворитель плава СРК-2	1	т/год	0,034284	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,94852E-05				0,035320	
44	3004 Растворитель плава СРК-3	1	т/год	0,045350	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000118369	-	-	-	0,046720	
45	3005 Растворитель плава СРК-3	1	т/год	0,031109	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,1198E-05	-	-	-	0,032049	
46	3006 Растворитель плава СРК-4	1	т/год	0,021451	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	5,59896E-05				0,022099	
47	3007 Растворитель плава СРК-4	1	т/год	0,015951	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	4,16339E-05				0,016433	
48	5005 Резервуары с мазутом	1	т/год	0,002313	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	6,03719E-06	-	-	-	0,002383	

N п/п	Характеристика ста	ционарно окупності		чника (их со-	Загрязняющее ве	щество		ологический пока- затель НДТ	показ нарн	ологический затель стацио- ого источника овокупности)	газоі смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во источ- ников	Ед.	Іощность Вели чина	Наименование	Класс опасно- сти	Ед.	Величина	Ед.	Величина	Ед. изм.	Величина	выброса, час/год	по стацио- нарному ис- точнику (их совокупно- сти)	по ОНВ в целом
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	4201 Труба		т/год	0,030190	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,060414	
49	котла сжигания	1		0,014226	Диметилсульфид	4				0,000153062	_	-	-		
	отходов			0,014226	Метантиол (Метил- меркаптан)	4									81,88497
50	6305 Резерву- ары	1	т/год	0,000091	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2,3752E-07	-	-	-	0,000094	
51	6307 TPK	1	т/год	0,000003	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	7,83034E-09	-	-	-	0,000003	
50	9002 Первичный	1	т/год т/год	0,037590	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000100568				0,039694	
52	отстойник	1		0,000940	Метантиол (Метил- меркаптан)	4					-	-	-		
52	9003 Первичный	1	т/год т/год	0,075180	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000201133				0,079387	
53	отстойник	1		0,001879	Метантиол (Метил- меркаптан)	4					-	-	-		
5.4	9004 Первичный	1	т/год т/год	0,053230	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,00014241				0,056209	
54	отстойник	1		0,001331	Метантиол (Метил- меркаптан)	4					-	-	-		
	9006 Первичный		т/год т/год	0,009270	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2,51485E-05				0,009926	
55	отстойник			0,000365	Метантиол (Метил- меркаптан)	4	-				-	-	-		81,88497
56	9007 Вторичный отстойник	1	т/год т/год	0,009100	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2,46891E-05	-	-	-	0,009745	

N п/п	Характеристика став	ционарно окупності		чника (их со-	Загрязняющее ве	щество		логический пока- затель НДТ	показ нарн	нологический затель стацио- ого источника овокупности)	газол смеси	од (объем) воздушной и источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во источ-		Г	Наименование	Класс опасно-	Ед. изм.	Величина	Ед. изм.	Величина	Ед. изм.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		ников	Ед. изм.	Вели чина		сти								точнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
				0,000359	Метантиол (Метил- меркаптан)	4									
57	9008 Вторичный	1	т/год т/год	0,011320	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	3,07106E-05				0,012121	
57	отстойник	I I		0,000446	Метантиол (Метил- меркаптан)	4					-	-	-		
50	0010 H	1	т/год т/год	0,072640	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000198097				0,078189	
58	9010 Илонакопитель	1		0,003256	Метантиол (Метил- меркаптан)	4					-	-	-		
50	9013 Преаэратр	1	т/год т/год	0,017630	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	4,78852E-05				0,018900	
59	аэротенки	1		0,000716	Метантиол (Метил- меркаптан)	4					-	-	-		
(0)	9014 Преаэратр	1	т/год т/год	0,023340	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	6,33945E-05				0,025022	
60	аэротенки	1		0,000948	Метантиол (Метил- меркаптан)	4					-	-	-		
			т/год	0,061440	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,065026	81,88497
61	9015 Осадкоуплотнитель	1		0,001679	Метантиол (Метил- меркаптан)	4				0,000164748	-	-	-		

N п/п	Характеристика стац во	ционарно жупност		чника (их со-	Загрязняющее ве	щество		ологический пока- затель НДТ	показ нарн	нологический затель стацио- ого источника совокупности)	газо смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во источ- ников	М Ед. изм.	ощность Вели чина	Наименование	Класс опасно- сти	Ед. изм.	Величина	Ед. изм.	Величина	Ед.	Величина	выброса, час/год	по стацио- нарному ис- точнику (их совокупно- сти)	по ОНВ в целом
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
			т/год	0,009170	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25-1,00	Кг/т						
1	1201 Циклон системы пневмотранспортера	1		0,035640	Диметилсульфид	4				0,000118316	-	-	-	0,0467	
	iniebiio i panenopi opa			0,000520	Метантиол (Метил- меркаптан)	4									
			т/год	0,021382	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25-1,00	Кг/т						
2	1202 Кондесатор бункера щепы, терпентинный кондесатор	1	-	25,449500	Диметилсульфид	4				0,066910408	-	-	-	26,40954	
	выход			0,164168	Метантиол (Метил- меркаптан)	4									81,88497
			т/год	0,000740	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,001836111	-	-	-	0,724713	01,00477
3	1203 Промыватель сучков, бак отходов	1		0,701730	Диметилсульфид	4				0,001830111					
				0,000990	Метантиол (Метил- меркаптан)	4									
	1204 Вентиляция		т/год	0,663609	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.026224014	-	-	-	10,39439	
4	транспортера подачи	1		9,358240	Диметилсульфид	4				0,026334914					
	щепы			0,067715	Метантиол (Метил- меркаптан)	4									
			т/год	0,003140	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.000702004				3,830092	
5	1205 Промывная установка	1		3,713230	Диметилсульфид	4	1			0,009703804	-	-	-		
				0,001400	Метантиол (Метил- меркаптан)	4									

N п/п	Характеристика стан во	ционарно жупності		чника (их со-	Загрязняющее ве	ещество		ологический пока- затель НДТ	пока: нарн	нологический затель стацио- ого источника совокупности)	газол смеси	од (объем) воздушной и источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во источ-	М Ед.	Іощность Вели чина	Наименование	Класс опасно-	Ед. изм.	Величина	Ед. изм.	Величина	Ед. изм.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		ников	изм.	Б ели чина		сти								точнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	1206 Общеобменная		т/год	0,003221	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,009942745				3,924401	
6	вентиляция промыш-ленного отдела на от-	1		3,804661	Диметилсульфид	4				0,009942743	-	-	-		
	метке 0.0			0,001432	Метантиол (Метил- меркаптан)	4	-								
			т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,033739	
7	1207 Вентиляция на отметке 10.0м	1		0,018800	Диметилсульфид	4				8,54812E-05	-	_	-		
				0,001470	Метантиол (Метил- меркаптан)	4	_								
			т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,033739	
8	1208 Вентиляция на отметке 10.0м	1		0,018800	Диметилсульфид	4				8,54812E-05	-	-	-		81,88497
	ormerke rollom			0,001470	Метантиол (Метил- меркаптан)	4									81,88497
			т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,033739	
9	1209 Вентиляция на отметке 10.0м	1		0,018800	Диметилсульфид	4				8,54812E-05	-	-	-		
				0,001470	Метантиол (Метил- меркаптан)	4	_								
			т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.540467-07				0,033739	
10	1210 Вентиляция на отметке 10.0м	1		0,018800	Диметилсульфид	4				8,54812E-05	_	-	-		
	ormerke rolling			0,001470	Метантиол (Метил- меркаптан)	4	1								
11		1	т/год	0,008920	Дигидросульфид	2	Кг/т	Суммарно 0,25-	Кг/т		-	-	-		

N п/п	Характеристика стац во	ционарно жупності		чника (их со-	Загрязняющее ве	щество		элогический пока- затель НДТ	пока: нарн	нологический затель стацио- ого источника совокупности)	газол смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во источ- ников	М Ед.	ощность Вели чина	Наименование	Класс опасно- сти	Ед. изм.	Величина	Ед. изм.	Величина	Ед. изм.	Величина	выброса, час/год	по стацио- нарному ис- точнику (их	по ОНВ в целом
			изм.											совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
					(Сероводород)			1,00						13,358708	
	1211 Циклон пено- сборник			12,921980	Диметилсульфид	4				0,03384522					
	соорник			0,036050	Метантиол (Метил- меркаптан)	4									
	1212 Вентиляция		т/год	0,030760	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,086888	
12	(зона шелокоподогревателя	1		0,051100	Диметилсульфид	4				0,000220137	-	-	-		
)			0,002480	Метантиол (Метил- меркаптан)	4									
	1213 Вентиляция		т/год	0,030760	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,086888	
13	(зона целокоподогревателя	1		0,051100	Диметилсульфид	4	-			0,000220137	-	-	-		81,88497
)			0,002480	Метантиол (Метил- меркаптан)	4									
	1214 Вентиляция		т/год	0,023538	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.000171033				0,063875	
14	(зона варочного	1		0,035594	Диметилсульфид	4				0,000161832	-	-	-		
	котла)			0,002870	Метантиол (Метил- меркаптан)	4									
	1215 D		т/год	0,023538	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.000171222				0,063875	
15	1215 Вентиляция (зона варочного	1		0,035594	Диметилсульфид	4				0,000161832	_	-	-		
	котла)			0,002870	Метантиол (Метил- меркаптан)	4									
16	1216 Вентиляция	1	т/год	0,023538	Дигидросульфид	2	Кг/т	Суммарно 0,25-	Кг/т		-	-	-		

N п/п	Характеристика став во	ционарно окупності		чника (их со-	Загрязняющее ве	щество		ологический пока- затель НДТ	пока: нарн	нологический затель стацио- ого источника совокупности)	газол смеси	сод (объем) воздушной и источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	M	Гощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед. изм.	Вели чина		опасно-	изм.		изм.		изм.			нарному источнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	(зона варочного котла)				(Сероводород)			1,00						0,063875	
	110 1111)			0,035594	Диметилсульфид	4				0,000161832					
				0,002870	Метантиол (Метил- меркаптан)	4	-								
	1015 5		т/год	0,023538	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,063875	
17	1217 Вентиляция (зона варочного	1		0,035594	Диметилсульфид	4				0,000161832	-	-	-		
	котла)			0,002870	Метантиол (Метил- меркаптан)	4									81,88497
			т/год	0,039597	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000210968				0,083269	
18	2101 Баки плот. ч/щ	1		0,037148	Диметилсульфид	4				0,000210908	-	-	-		
				0,004082	Метантиол (Метил- меркаптан)	4									
19	2201 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	_	_	-	0,033572	
	№3			0,018122	Диметилсульфид	4									
20	2202 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	-	-	-	0,033572	
	№3			0,018122	Диметилсульфид	4									
21	2203 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	_	_	-	0,033572	
	№3			0,018122	Диметилсульфид	4									
22	2204 Вентиляция в/ст №3	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	-	-	-	0,033572	

N п/п	Характеристика стап	ционарно купності		чника (их со-	Загрязняющее ве	ещество		ологический пока- затель НДТ	пока нарн	нологический ватель стацио- ого источника овокупности)	газол смеси	од (объем) воздушной и источника ыбросов	Время ра- боты ис- точ- ника(ов)		иеский норматив поса, т/год
	Наименование	Кол-во	N	Іощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед.	Вели чина		опасно- сти	изм.		изм.		изм.			нарному источнику (их совокупности)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
				0,018122	Диметилсульфид	4									
23	2205 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	_	_	_	0,033572	
23	№3	1		0,018122	Диметилсульфид	4									04.0040=
24	2206 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	_	-	-	0,033572	81,88497
	№3			0,018122	Диметилсульфид	4									
25	2207 Вентиляция	1	т/год	0,015245	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	9,2847E-05	_	_	_	0,036647	
23	помещения в/ст №1,2	1		0,020327	Диметилсульфид	4					_		_		
26	2208 Вентиляция по-	1	т/год	0,014920	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	9,08581E-05				0,035862	
20	мещения в/ст №1,2	1		0,019890	Диметилсульфид	4					-	_	-		
27	2401 ИРП-1 скруббер	1	т/год	3,005676	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,007845158				3,096484	
28	2402 ИРП-2 скруббер	1	т/год	8,523438	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,022247146	-	-	-	8,780949	
29	2403 ИРП-3 скруббер	1	т/год	1,837487	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,004796051				1,893001	
			т/год	4,657868	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					6,672103	
30	4101 Реактор разло- жения сульфатного мыла скруббер	1		0,724277	Диметилсульфид	4				0,016904238	-	-	-		
	пина скруосер			1,094291	Метантиол (Метил- меркаптан)	4									

N п/п	Характеристика стан	ционарно		чника (их со-	Загрязняющее ве	ещество		ологический пока- затель НДТ	пока нарн	нологический затель стацио- ого источника совокупности)	газол смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во источ- ников	М Ед. изм.	ощность Вели чина	Наименование	Класс опасно- сти	Ед. изм.	Величина	Ед. изм.	Величина	Ед. изм.	Величина	выброса, час/год	по стацио- нарному ис- точнику (их совокупно- сти)	по ОНВ в целом
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
31	4102 Вентиляция	1	т/год	0,034600	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000110825				0,043743	
31	лаборатории В-45	1	-	0,007860	Диметилсульфид	4					-	-	-		
32	4103 Вентиляция В-	1	т/год	0,142500	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,00065091				0,256914	
	46 1 этаж			0,106880	Диметилсульфид	4									
33	4104 Вентиляция В- 41 5 этаж	1	т/год	0,023718	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	6,8646E-05	-	-	-	0,027095	81,88497
	41 3 91aж			0,002582	Диметилсульфид	4									
34	4105 Вентиляция В- 43 4 этаж	1	т/год	0,089880	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000273436				0,107925	
	43 4 91am			0,014880	Диметилсульфид	4					-	-	-		
35	4106 Вентиляция В- 48 2 этаж	1	т/год	0,108620	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000485533				0,191640	
	46 Z 91aж			0,077400	Диметилсульфид	4									
			т/год	0,000420	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	6,44959E-05				0,025457	
36	4107 Бак мыла №5	1		0,024220	Диметилсульфид	4				0, 11 /3/E-03	-	-	-		
				0,000070	Метантиол (Метил- меркаптан)	4									
			т/год	0,000850	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,013856	
37	4108 Бак мыла ч/щ №1	1		0,012480	Диметилсульфид	4				3,5106E-05	-	-	-		
				0,000120	Метантиол (Метил- меркаптан)	4									
38	4109 Бак мыла ч/щ	1	т/год	0,000850	Дигидросульфид	2	Кг/т	Суммарно 0,25-	Кг/т		-	-	-		

N п/п	Характеристика стан	ционарно окупності		чника (их со-	Загрязняющее ве	щество		ологический пока- затель НДТ	показ нарн	нологический затель стацио- ого источника совокупности)	газо смесь	код (объем) воздушной и источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во источ- ников	М Ед. изм.	Іощность Вели чина	Наименование	Класс опасно- сти	Ед.	Величина	Ед. изм.	Величина	Ед.	Величина	выброса, час/год	по стацио- нарному ис- точнику (их совокупно- сти)	по ОНВ в целом
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	№ 2				(Сероводород)			1,00						0,013856	
				0,012480	Диметилсульфид	4				3,5106E-05					
				0,000120	Метантиол (Метил- меркаптан)	4									
			т/год	0,000850	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2.50412E-05				0,014186	81,88497
39	4110 Бак мыла ч/щ №3	1		0,012800	Диметилсульфид	4				3,59413E-05	-	-	-		
	5.25			0,000120	Метантиол (Метил- меркаптан)	4	-								
			т/год	0,000850	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2.510/05.05				0,013856	
40	4111 Бак мыла ч/щ №4	1		0,012480	Диметилсульфид	4				3,5106E-05	-	-	-		
				0,000120	Метантиол (Метил- меркаптан)	4	-								
41	3001 СРК-2,3,4 скрубберная установка	1	т/год	0,456135	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,001190564	-	-	-	0,469916	
42	3002 Растворитель плава СРК-2	1	т/год	0,042971	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000112159				0,044269	
43	3003 Растворитель плава СРК-2	1	т/год	0,034284	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,94852E-05				0,035320	
44	3004 Растворитель плава СРК-3	1	т/год	0,045350	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000118369	-	-	-	0,046720	
45	3005 Растворитель плава СРК-3	1	т/год	0,031109	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,1198E-05	-	-	-	0,032049	

N п/п	Характеристика ста	ционарно окупності		чника (их со-	Загрязняющее ве	щество		логический пока- затель НДТ	показ нарн	нологический затель стацио- ого источника совокупности)	газол смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	N	Іощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед.	Вели чина		опасно-	изм.		изм.		изм.			нарному источнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
46	3006 Растворитель плава СРК-4	1	т/год	0,021451	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	5,59896E-05				0,022099	
47	3007 Растворитель плава СРК-4	1	т/год	0,015951	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	4,16339E-05				0,016433	81,88497
48	5005 Резервуары с мазутом	1	т/год	0,002313	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	6,03719E-06	-	-	-	0,002383	
	4201 Труба		т/год	0,030190	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.000152072				0,060414	
49	котла сжигания	1		0,014226	Диметилсульфид	4				0,000153062	_	_	_		
	отходов			0,014226	Метантиол (Метил- меркаптан)	4									
50	6305 Резерву- ары	1	т/год	0,000091	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2,3752E-07	-	-	-	0,000094	
51	6307 TPK	1	т/год	0,000003	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	7,83034E-09	-	-	-	0,000003	
52	9002 Первичный	1	т/год т/год	0,037590	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000100568				0,039694	
32	отстойник	1		0,000940	Метантиол (Метил- меркаптан)	4					-	-	-		
53	9003 Первичный	1	т/год т/год	0,075180	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000201133				0,079387	
	отстойник	1		0,001879	Метантиол (Метил- меркаптан)	4					-	_	-		
54	9004 Первичный	1	т/год т/год	0,053230	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,00014241				0,056209	
34	отстойник	1		0,001331	Метантиол (Метил- меркаптан)	4					-	_	-		

N п/п	Характеристика став во	ционарно		чника (их со-	Загрязняющее ве	щество		логический пока- затель НДТ	показ нарн	нологический затель стацио- ого источника совокупности)	газоі смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	N	Іощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед.	Вели чина		опасно- сти	изм.		изм.		изм.			нарному источнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	9006 Первичный		т/год т/год	0,009270	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2,51485E-05				0,009926	
55	отстойник	1		0,000365	Метантиол (Метил- меркаптан)	4	-				-	-	-		81,88497
	9007 Вторичный		т/год т/год	0,009100	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2,46891E-05				0,009745	
56	отстойник	1		0,000359	Метантиол (Метил- меркаптан)	4					-	-	-		
	9008 Вторичный		т/год т/год	0,011320	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	3,07106E-05				0,012121	
57	отстойник	1		0,000446	Метантиол (Метил- меркаптан)	4					-	-	-		
	2010 77		т/год т/год	0,072640	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000198097				0,078189	
58	9010 Илонакопитель	l		0,003256	Метантиол (Метил- меркаптан)	4					-	-	-		
5 0	9013 Преаэратр	1	т/год т/год	0,017630	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	4,78852E-05				0,018900	
59	аэротенки	1		0,000716	Метантиол (Метил- меркаптан)	4					-	-	-		
	9014 Преаэратр		т/год т/год	0,023340	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	6,33945E-05				0,025022	81,88497
60	аэротенки	I		0,000948	Метантиол (Метил- меркаптан)	4					-	-	-		
	9015		т/год	0,061440	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000164748				0,065026	
61	Осадкоуплотнитель	1		0,001679	Метантиол (Метил- меркаптан)	4					-	-	-		

N п/п	Характеристика стац во	ционарно окупности		очника (их со-	Загрязняющее ве	ещество		логический пока- затель НДТ	пока нарн	нологический затель стацио- ого источника совокупности)	газов смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во источ-	N	Іощность	Наименование	Класс опасно-	Ед. изм.	Величина	Ед. изм.	Величина	Ед. изм.	Величина	выброса, час/год	по стацио- нарному ис-	по ОНВ в целом
		ников	Ед. изм.	Вели чина		сти	nsw.		nsw.		H3IVI.			точнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
			т/год	0,009170	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25-1,00	Кг/т						
1	1201 Циклон системы пневмотранспортера	1		0,035640	Диметилсульфид	4				0,000118316	-	-	-	0,0467	
				0,000520	Метантиол (Метил- меркаптан)	4									
			т/год	0,021382	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25-1,00	Кг/т						
2	1202 Кондесатор бункера щепы, терпентинный кондесатор	1		25,449500	Диметилсульфид	4				0,066910408	-	-	-	26,40954	
	выход			0,164168	Метантиол (Метил- меркаптан)	4									
			т/год	0,000740	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т		-	-	-	0,724713	
3	1203 Промыватель сучков, бак отходов	1		0,701730	Диметилсульфид	4				0,001836111					
				0,000990	Метантиол (Метил- меркаптан)	4									24.2242
			т/год	0,663609	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т		-	-	-	10,39439	81,88497
4	1204 Вентиляция транспортера подачи щепы	1		9,358240	Диметилсульфид	4				0,026334914					
	Щопи			0,067715	Метантиол (Метил- меркаптан)	4									
5	1205 Промывная	1	т/год	0,003140	Дигидросульфид	2	Кг/т	Суммарно 0,25-	Кг/т		-	-	-		

N п/п	Характеристика стац во	ционарно жупност		чника (их со-	Загрязняющее ве	щество		ологический пока- затель НДТ	пока: нарн	нологический затель стацио- ого источника совокупности)	газов смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив ооса, т/год
	Наименование	Кол-во источ- ников	Ед. изм.	Іощность Вели чина	Наименование	Класс опасно- сти	Ед.	Величина	Ед. изм.	Величина	Ед. изм.	Величина	выброса, час/год	по стацио- нарному ис- точнику (их совокупно- сти)	по ОНВ в целом
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	установка				(Сероводород)			1,00						3,830092	
				3,713230	Диметилсульфид	4				0,009703804					
				0,001400	Метантиол (Метил- меркаптан)	4									
			т/год	0,003221	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					3,924401	
6	1206 Общеобменная вентиляция промышленного отдела на отметке 0.0	1		3,804661	Диметилсульфид	4	-			0,009942745	-	-	-		
	Merke 0.0			0,001432	Метантиол (Метил- меркаптан)	4	-								
			т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,033739	
7	1207 Вентиляция на отметке 10.0м	1		0,018800	Диметилсульфид	4				8,54812E-05	-	-	-		
				0,001470	Метантиол (Метил- меркаптан)	4	_								
			т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,033739	
8	1208 Вентиляция на отметке 10.0м	1		0,018800	Диметилсульфид	4				8,54812E-05	-	-	-		
	ormerke rolom			0,001470	Метантиол (Метил- меркаптан)	4	_								
9	1209 Вентиляция на	1	т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,54812E-05	_	-	-	0,033739	81,88497
	отметке 10.0м			0,018800	Диметилсульфид	4									

N п/п	Характеристика стан	ционарно окупності		чника (их со-	Загрязняющее ве	щество		логический пока- затель НДТ	показ нарн	нологический затель стацио- ого источника совокупности)	газоі смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	N	Іощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед.	Вели чина		опасно-	изм.		изм.		изм.			нарному источнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
				0,001470	Метантиол (Метил- меркаптан)	4									
			т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.54012F 05				0,033739	
10	1210 Вентиляция на отметке 10.0м	1		0,018800	Диметилсульфид	4				8,54812E-05	-	-	-		
				0,001470	Метантиол (Метил- меркаптан)	4									
			т/год	0,008920	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.02204522				13,358708	
11	1211 Циклон пено- сборник	1		12,921980	Диметилсульфид	4				0,03384522	-	-	-		
	·			0,036050	Метантиол (Метил- меркаптан)	4									
	1212 Вентиляция		т/год	0,030760	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,086888	
12	(зона целокоподогревателя	1		0,051100	Диметилсульфид	4				0,000220137	-	-	-		
)			0,002480	Метантиол (Метил- меркаптан)	4	_								
	1213 Вентиляция		т/год	0,030760	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,086888	
13	(зона щелокоподогревателя	1		0,051100	Диметилсульфид	4				0,000220137	-	-	-		81,88497
)			0,002480	Метантиол (Метил- меркаптан)	4									
14	1214 Вентиляция (зона варочного	1	т/год	0,023538	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000161832	_	_	_	0,063875	
	(зона варочного котла)	_		0,035594	Диметилсульфид	4									

N п/п	Характеристика став во	ционарно		чника (их со-	Загрязняющее ве	щество		элогический пока- затель НДТ	показ нарн	нологический ватель стацио- ого источника овокупности)	газол смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	M	Іощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед. изм.	Вели чина		опасно-	изм.		изм.		изм.			нарному источнику (их совокупности)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
				0,002870	Метантиол (Метил- меркаптан)	4									
	1215 D		т/год	0,023538	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.000171033				0,063875	
15	1215 Вентиляция (зона варочного котла)	1		0,035594	Диметилсульфид	4				0,000161832	-	-	-		
	копла)			0,002870	Метантиол (Метил- меркаптан)	4									
	1216 D		т/год	0,023538	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.0004.64000				0,063875	
16	1216 Вентиляция (зона варочного	1		0,035594	Диметилсульфид	4				0,000161832	-	-	-		
	котла)			0,002870	Метантиол (Метил- меркаптан)	4									
	1217 D		т/год	0,023538	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.000161000				0,063875	
17	1217 Вентиляция (зона варочного	1		0,035594	Диметилсульфид	4				0,000161832	-	-	-		
	котла)			0,002870	Метантиол (Метил- меркаптан)	4									
			т/год	0,039597	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000210968				0,083269	
18	2101 Баки плот. ч/щ	1		0,037148	Диметилсульфид	4				0,000210908	-	-	-		
				0,004082	Метантиол (Метил- меркаптан)	4									81,88497
19	2201 Вентиляция в/ст №3	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	-	-	-	0,033572	
	רהער			0,018122	Диметилсульфид	4									
20	2202 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид	2	Кг/т	Суммарно 0,25-	Кг/т		-	-	-		

N п/п	Характеристика стан	ционарно окупност		чника (их со-	Загрязняющее ве	ещество		ологический пока- затель НДТ	пока нарн	нологический затель стацио- ого источника совокупности)	газоі смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во источ- ников	Ед. изм.	ощность Вели чина	Наименование	Класс опасно- сти	Ед. изм.	Величина	Ед. изм.	Величина	Ед. изм.	Величина	выброса, час/год	по стацио- нарному ис- точнику (их совокупно- сти)	по ОНВ в целом
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	№3				(Сероводород)			1,00		8,50558E-05				0,033572	
				0,018122	Диметилсульфид	4									
21	2203 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	_	-	-	0,033572	
	№3			0,018122	Диметилсульфид	4									
22	2204 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	_	-	-	0,033572	
	№3			0,018122	Диметилсульфид	4									
23	2205 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	_	-	-	0,033572	
	№3			0,018122	Диметилсульфид	4									
24	2206 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	_	-	-	0,033572	
	№3			0,018122	Диметилсульфид	4									
25	2207 Вентиляция	1	т/год	0,015245	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	9,2847E-05	_	_	_	0,036647	
23	помещения в/ст №1,2	1		0,020327	Диметилсульфид	4						_			
26	2208 Вентиляция по-	1	т/год	0,014920	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	9,08581E-05				0,035862	81,88497
26	мещения в/ст №1,2	1		0,019890	Диметилсульфид	4					-	-	-		
27	2401 ИРП-1 скруббер	1	т/год	3,005676	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,007845158				3,096484	
28	2402 ИРП-2 скруббер	1	т/год	8,523438	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,022247146	-	-	-	8,780949	

N п/п	Характеристика стаг во	ционарно		чника (их со-	Загрязняющее ве	ещество		ологический пока- затель НДТ	пока нарн	нологический затель стацио- ого источника совокупности)	газов смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	M	Іощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед.	Вели чина		опасно- сти	изм.		изм.		изм.			нарному источнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
29	2403 ИРП-3 скруббер	1	т/год	1,837487	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,004796051				1,893001	
			т/год	4,657868	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					6,672103	
30	4101 Реактор разло- жения сульфатного мыла скруббер	1		0,724277	Диметилсульфид	4				0,016904238	-	-	-		
	mbina expyosop			1,094291	Метантиол (Метил- меркаптан)	4	-								
31	4102 Вентиляция	1	т/год	0,034600	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000110825				0,043743	
	лаборатории В-45			0,007860	Диметилсульфид	4					-	-	-		
32	4103 Вентиляция В- 46 1 этаж	1	т/год	0,142500	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,00065091				0,256914	
	40 Г ЭТАЖ			0,106880	Диметилсульфид	4									81,88497
33	4104 Вентиляция В- 41 5 этаж	1	т/год	0,023718	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	6,8646E-05	-	-	-	0,027095	01,00497
	41 3 Этаж			0,002582	Диметилсульфид	4									
34	4105 Вентиляция В- 43 4 этаж	1	т/год	0,089880	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000273436				0,107925	
	43 4 Этаж			0,014880	Диметилсульфид	4					-	-	-		
35	4106 Вентиляция В-	1	т/год	0,108620	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000485533				0,191640	
	48 2 этаж			0,077400	Диметилсульфид	4									
36	4107 Бак мыла №5	1	т/год	0,000420	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	6,44959E-05	-	-	-	0,025457	
				0,024220	Диметилсульфид	4									

N п/п	Характеристика став	ционарно окупності		очника (их со-	Загрязняющее ве	щество		элогический пока- затель НДТ	показ нарн	нологический ватель стацио- ого источника овокупности)	газол смеси	од (объем) воздушной и источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	N	Тощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед.	Вели чина		опасно- сти	изм.		изм.		изм.			нарному источнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
				0,000070	Метантиол (Метил- меркаптан)	4									
			т/год	0,000850	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2.510.00.05				0,013856	
37	4108 Бак мыла ч/щ №1	1		0,012480	Диметилсульфид	4				3,5106E-05	-	-	-		
				0,000120	Метантиол (Метил- меркаптан)	4									
			т/год	0,000850	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2.510/E-05				0,013856	
38	4109 Бак мыла ч/щ №2	1		0,012480	Диметилсульфид	4				3,5106E-05	-	-	-		
				0,000120	Метантиол (Метил- меркаптан)	4									
			т/год	0,000850	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2 50412E 05				0,014186	
39	4110 Бак мыла ч/щ №3	1		0,012800	Диметилсульфид	4				3,59413E-05	-	-	-		81,88497
				0,000120	Метантиол (Метил- меркаптан)	4									
			т/год	0,000850	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2.510/E-05				0,013856	
40	4111 Бак мыла ч/щ №4	1		0,012480	Диметилсульфид	4				3,5106E-05	-	-	-		
				0,000120	Метантиол (Метил- меркаптан)	4									
41	3001 СРК-2,3,4 скрубберная установка	1	т/год	0,456135	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,001190564	-	-	-	0,469916	
42	3002 Растворитель плава СРК-2	1	т/год	0,042971	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000112159				0,044269	

N п/п	Характеристика ста в	ционарно		очника (их со-	Загрязняющее ве	щество		логический пока- затель НДТ	пока: нарн	нологический затель стацио- ого источника совокупности)	газов смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во источ- ников	М Ед. изм.	Іощность Вели чина	Наименование	Класс опасно- сти	Ед. изм.	Величина	Ед. изм.	Величина	Ед.	Величина	выброса, час/год	по стацио- нарному ис- точнику (их совокупно- сти)	по ОНВ в целом
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
43	3003 Растворитель плава СРК-2	1	т/год	0,034284	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,94852E-05				0,035320	
44	3004 Растворитель плава СРК-3	1	т/год	0,045350	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000118369	-	-	-	0,046720	
45	3005 Растворитель плава СРК-3	1	т/год	0,031109	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,1198E-05	-	-	-	0,032049	
46	3006 Растворитель плава СРК-4	1	т/год	0,021451	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	5,59896E-05				0,022099	
47	3007 Растворитель плава СРК-4	1	т/год	0,015951	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	4,16339E-05				0,016433	
48	5005 Резервуары с мазутом	1	т/год	0,002313	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	6,03719E-06	-	-	-	0,002383	81,88497
	4201 Труба		т/год	0,030190	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,060414	
49	котла сжигания	1		0,014226	Диметилсульфид	4	-			0,000153062	_	-	-		
	отходов			0,014226	Метантиол (Метил- меркаптан)	4									
50	6305 Резерву- ары	1	т/год	0,000091	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2,3752E-07	-	-	-	0,000094	
51	6307 TPK	1	т/год	0,000003	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	7,83034E-09	-	-	-	0,000003	
52	9002 Первичный отстойник	1	т/год т/год	0,037590	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000100568	-	-	-	0,039694	

N п/п	Кол-во источ-	_		чника (их со-	Загрязняющее ве	щество		логический пока- затель НДТ	пока нарн	нологический затель стацио- ого источника совокупности)	газон смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование		M	Іощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед.	Вели чина		опасно- сти	изм.		изм.		изм.			нарному источнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
				0,000940	Метантиол (Метил- меркаптан)	4									
52	9003 Первичный	1	т/год т/год	0,075180	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000201133				0,079387	
53	отстойник	1		0,001879	Метантиол (Метил- меркаптан)	4					-	-	-		
	9004 Первичный		т/год т/год	0,053230	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,00014241				0,056209	
54	отстойник	1		0,001331	Метантиол (Метил- меркаптан)	4	-				-	-	-		
	9006 Первичный	,	т/год т/год	0,009270	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2,51485E-05				0,009926	
55	отстойник	1		0,000365	Метантиол (Метил- меркаптан)	4					-	-	-		
-	9007 Вторичный	,	т/год т/год	0,009100	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2,46891E-05				0,009745	81,88497
56	отстойник	1		0,000359	Метантиол (Метил- меркаптан)	4	-				-	-	-		
	9008 Вторичный	,	т/год т/год	0,011320	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	3,07106E-05				0,012121	
57	отстойник	1		0,000446	Метантиол (Метил- меркаптан)	4					-	-	-		
			т/год т/год	0,072640	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000198097				0,078189	
58	9010 Илонакопитель	1		0,003256	Метантиол (Метил- меркаптан)	4	-				-	-	-		
59	9013 Преаэратр аэротенки	1	т/год т/год	0,017630	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	4,78852E-05	-	-	-	0,018900	

N п/п	Характеристика стаг во	ционарно		чника (их со-	Загрязняющее ве	щество		логический пока- затель НДТ	показ нарн	нологический затель стацио- ого источника совокупности)	газов смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во источ- ников	М Ед. изм.	Іощность Вели чина	Наименование	Класс опасно- сти	Ед. изм.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио- нарному ис- точнику (их совокупно- сти)	по ОНВ в целом
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
				0,000716	Метантиол (Метил- меркаптан)	4									01 00 407
60	9014 Преаэратр	1	т/год т/год	0,023340	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	6,33945E-05				0,025022	81,88497
00	аэротенки	1		0,000948	Метантиол (Метил- меркаптан)	4					-	-	-		
			т/год	0,061440	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,065026	
61	9015 Осадкоуплотнитель	1		0,001679	Метантиол (Метил- меркаптан)	4				0,000164748	-	-	-		

2027 год

N n/	Т Характеристика стац во	ционарно жупності		чника (их со-	Загрязняющее ве	щество		логический пока- затель НДТ	показ нарно	ологический ватель стацио- ого источника овокупности)	газон смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	N	Іощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ-		Вели чина		опасно-	изм.		изм.		изм.			нарному источнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	1201 Циклон системы	1	т/год	0,009170	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25-1,00	Кг/т	0,000118316	-	_	-	0,0467	
	пневмотранспортера			0,035640	Диметилсульфид	4									

N п/п	Характеристика стат во	ционарно окупності		очника (их со-	Загрязняющее ве	щество		ологический пока- затель НДТ	пока: нарн	нологический затель стацио- ого источника совокупности)	газоі смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во источ- ников	Ед. изм.	Іощность Вели чина	Наименование	Класс опасно- сти	Ед. изм.	Величина	Ед.	Величина	Ед. изм.	Величина	выброса, час/год	по стацио- нарному ис- точнику (их совокупно- сти)	по ОНВ в целом
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
				0,000520	Метантиол (Метил- меркаптан)	4									
			т/год	0,021382	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25-1,00	Кг/т						
2	1202 Кондесатор бункера щепы, терпентинный кондесатор	1		25,449500	Диметилсульфид	4	-			0,066910408	-	-	-	26,40954	
	выход			0,164168	Метантиол (Метил- меркаптан)	4									
			т/год	0,000740	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.001026111	-	-	-	0,724713	
3	1203 Промыватель сучков, бак отходов	1		0,701730	Диметилсульфид	4				0,001836111					81,88497
	ey mes, our omeges			0,000990	Метантиол (Метил- меркаптан)	4									01,00177
	1204 Вентиляция		т/год	0,663609	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.026224014	-	-	-	10,39439	
4	транспортера подачи	1		9,358240	Диметилсульфид	4				0,026334914					
	щепы			0,067715	Метантиол (Метил- меркаптан)	4									
			т/год	0,003140	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.000702804				3,830092	
5	1205 Промывная установка	1		3,713230	Диметилсульфид	4				0,009703804	-	-	-		
	J			0,001400	Метантиол (Метил- меркаптан)	4									
6	1206 Общеобменная	1	т/год	0,003221	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,009942745	_	-	-	3,924401	
	1206 Общеобменная вентиляция промыш-			3,804661	Диметилсульфид	4									

N п/п	Характеристика стан	ционарно окупності		чника (их со-	Загрязняющее ве	ещество		элогический пока- затель НДТ	показ нарн	нологический ватель стацио- ого источника овокупности)	газов смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во источ- ников	М Ед.	ощность Вели чина	Наименование	Класс опасно- сти	Ед.	Величина	Ед. изм.	Величина	Ед. изм.	Величина	выброса, час/год	по стацио- нарному ис- точнику (их	по ОНВ в целом
			изм.											совокупно-	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	ленного отдела на от- метке 0.0			0,001432	Метантиол (Метил- меркаптан)	4									
			т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.54012F.05				0,033739	
7	1207 Вентиляция на отметке 10.0м	1		0,018800	Диметилсульфид	4				8,54812E-05	-	-	-		
				0,001470	Метантиол (Метил- меркаптан)	4	-								
			т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	9 54912E 05				0,033739	
8	1208 Вентиляция на отметке 10.0м	1		0,018800	Диметилсульфид	4				8,54812E-05	-	-	-		
				0,001470	Метантиол (Метил- меркаптан)	4									
			т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,54812E-05				0,033739	81,88497
9	1209 Вентиляция на отметке 10.0м	1		0,018800	Диметилсульфид	4				8,34812E-03	-	-	-		
				0,001470	Метантиол (Метил- меркаптан)	4									
			т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.54012F 0.5				0,033739	
10	1210 Вентиляция на отметке 10.0м	1		0,018800	Диметилсульфид	4				8,54812E-05	-	-	-		
				0,001470	Метантиол (Метил- меркаптан)	4									
11	1211 Циклон пено-	1	т/год	0,008920	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,03384522	-	-	-	13,358708	
	сборник			12,921980	Диметилсульфид	4									

N п/п	Характеристика стап во	(ионарно купност		чника (их со-	Загрязняющее ве	ещество		ологический пока- затель НДТ	пока: нарн	нологический затель стацио- ого источника совокупности)	газол смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	M	Іощность	Наименование	Класс	Ед. изм.	Величина	Ед. изм.	Величина	Ед. изм.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед. изм.	Вели чина		опасно- сти	изм.		изм.		изм.			нарному источнику (их совокупности)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
				0,036050	Метантиол (Метил- меркаптан)	4									
	1212 Вентиляция		т/год	0,030760	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,086888	
12	(зона щелокоподогревателя	1		0,051100	Диметилсульфид	4				0,000220137	-	-	-		
)			0,002480	Метантиол (Метил- меркаптан)	4									
	1213 Вентиляция		т/год	0,030760	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.00000105				0,086888	
13	(зона щелокоподогревателя	1		0,051100	Диметилсульфид	4				0,000220137	_	-	-		81,88497
)			0,002480	Метантиол (Метил- меркаптан)	4									
	1214 D		т/год	0,023538	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.0004.64000				0,063875	
14	1214 Вентиляция (зона варочного	1		0,035594	Диметилсульфид	4				0,000161832	-	-	-		
	котла)			0,002870	Метантиол (Метил- меркаптан)	4	-								
	1215 Davisson		т/год	0,023538	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.000171033				0,063875	
15	1215 Вентиляция (зона варочного	1		0,035594	Диметилсульфид	4				0,000161832	-	-	-		
	котла)			0,002870	Метантиол (Метил- меркаптан)	4									
	1216 D		т/год	0,023538	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.000161033				0,063875	
16	1216 Вентиляция (зона варочного	1		0,035594	Диметилсульфид	4				0,000161832	-	-	-		
	котла)			0,002870	Метантиол (Метил- меркаптан)	4									

N п/п	Характеристика стан	ционарно		чника (их со-	Загрязняющее ве	ещество		ологический пока- затель НДТ	пока нарн	нологический затель стацио- ого источника совокупности)	газов смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во источ- ников	М Ед.	ощность Вели чина	Наименование	Класс опасно- сти	Ед. изм.	Величина	Ед. изм.	Величина	Ед. изм.	Величина	выброса, час/год	по стацио- нарному ис- точнику (их	по ОНВ в целом
		пиков	изм.			CIN								совокупно-	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	1217 D		т/год	0,023538	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.000161022				0,063875	
17	1217 Вентиляция (зона варочного	1		0,035594	Диметилсульфид	4				0,000161832	-	-	-		
	котла)			0,002870	Метантиол (Метил- меркаптан)	4	-								
			т/год	0,039597	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000210968				0,083269	81,88497
18	2101 Баки плот. ч/щ	1		0,037148	Диметилсульфид	4				0,000210700	-	-	-		
				0,004082	Метантиол (Метил- меркаптан)	4									
19	2201 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05		-	-	0,033572	
	№3			0,018122	Диметилсульфид	4									
20	2202 Вентиляция в/ст №3	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	-	-	-	0,033572	
	J\ <u>0</u> 3			0,018122	Диметилсульфид	4									
21	2203 Вентиляция в/ст №3	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	_	-	-	0,033572	
	1,62			0,018122	Диметилсульфид	4									
22	2204 Вентиляция в/ст №3	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	_	-	-	0,033572	
	1102			0,018122	Диметилсульфид	4									
23	2205 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	-	-	-	0,033572	
	№3			0,018122	Диметилсульфид	4									
24	2206 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид	2	Кг/т	Суммарно 0,25-	Кг/т		-	-	-		

N п/п	Характеристика стац	ционарно жупност		чника (их со-	Загрязняющее ве	ещество		логический пока- затель НДТ	пока: нарн	нологический затель стацио- ого источника совокупности)	газоі смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	M	Іощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед.	Вели чина		опасно- сти	изм.		изм.		изм.			нарному источнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	№3				(Сероводород)			1,00		8,50558E-05				0,033572	
				0,018122	Диметилсульфид	4									
25	2207 Вентиляция	1	т/год	0,015245	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	9,2847E-05	_	_	_	0,036647	
23	помещения в/ст №1,2	1		0,020327	Диметилсульфид	4									
26	2208 Вентиляция по-	1	т/год	0,014920	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	9,08581E-05				0,035862	81,88497
20	мещения в/ст №1,2	1		0,019890	Диметилсульфид	4					-	-	-		
27	2401 ИРП-1 скруббер	1	т/год	3,005676	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,007845158				3,096484	
28	2402 ИРП-2 скруббер	1	т/год	8,523438	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,022247146	-	-	-	8,780949	
29	2403 ИРП-3 скруббер	1	т/год	1,837487	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,004796051				1,893001	
	4101 Decrease manya		т/год	4,657868	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.01/00/4220				6,672103	
30	4101 Реактор разложения сульфатного	1		0,724277	Диметилсульфид	4				0,016904238	_	_	_		
	мыла скруббер			1,094291	Метантиол (Метил- меркаптан)	4									
31	4102 Вентиляция	1	т/год	0,034600	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000110825				0,043743	
JI	лаборатории В-45	1		0,007860	Диметилсульфид	4					-	-	-		
32	4103 Вентиляция В- 46 1 этаж	1	т/год	0,142500	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,00065091				0,256914	

N п/п	Характеристика ста	ционарно		чника (их со-	Загрязняющее ве	щество		логический пока- затель НДТ	пока:	пологический ватель стацио- ого источника овокупности)	газол смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	M	Іощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед. изм.	Вели чина		опасно-	изм.		изм.		изм.			нарному источнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
				0,106880	Диметилсульфид	4									
33	4104 Вентиляция В-	1	т/год	0,023718	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	6,8646E-05	_	-	-	0,027095	81,88497
	41 5 этаж			0,002582	Диметилсульфид	4									
34	4105 Вентиляция В-	1	т/год	0,089880	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000273436				0,107925	
	43 4 этаж			0,014880	Диметилсульфид	4					-	-	-		
35	4106 Вентиляция В-	1	т/год	0,108620	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000485533				0,191640	
	48 2 этаж			0,077400	Диметилсульфид	4									
			т/год	0,000420	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	6,44959E-05				0,025457	
36	4107 Бак мыла №5	1		0,024220	Диметилсульфид	4				0,44939E-03	-	-	-		
				0,000070	Метантиол (Метил- меркаптан)	4									
			т/год	0,000850	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2.510/E.05				0,013856	
37	4108 Бак мыла ч/щ №1	1		0,012480	Диметилсульфид	4				3,5106E-05	-	-	-		
				0,000120	Метантиол (Метил- меркаптан)	4									
			т/год	0,000850	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2.510/E-05				0,013856	
38	4109 Бак мыла ч/щ №2	1		0,012480	Диметилсульфид	4				3,5106E-05	-	-	-		
				0,000120	Метантиол (Метил- меркаптан)	4									
39	4110 Бак мыла ч/щ	1	т/год	0,000850	Дигидросульфид	2	Кг/т	Суммарно 0,25-	Кг/т		-	-	-		

Ν п/п	Характеристика ста во	ционарно		чника (их со-	Загрязняющее ве	ещество		ологический пока- затель НДТ	пока нарн	нологический затель стацио- ого источника совокупности)	газот смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	N	І ощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед.	Вели чина		опасно- сти	изм.		изм.		изм.			нарному источнику (их совокупности)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	№ 3				(Сероводород)			1,00						0,014186	
				0,012800	Диметилсульфид	4				3,59413E-05					81,88497
				0,000120	Метантиол (Метил- меркаптан)	4									
			т/год	0,000850	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2.510/E-05				0,013856	
40	4111 Бак мыла ч/щ <u>№</u> 4	1		0,012480	Диметилсульфид	4				3,5106E-05	_	-	-		
	<u> </u>			0,000120	Метантиол (Метил- меркаптан)	4	-								
41	3001 СРК-2,3,4 скрубберная установка	1	т/год	0,456135	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,001190564	-	-	-	0,469916	
42	3002 Растворитель плава СРК-2	1	т/год	0,042971	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000112159				0,044269	
43	3003 Растворитель плава СРК-2	1	т/год	0,034284	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,94852E-05				0,035320	
44	3004 Растворитель плава СРК-3	1	т/год	0,045350	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000118369	-	-	-	0,046720	
45	3005 Растворитель плава СРК-3	1	т/год	0,031109	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,1198E-05	-	-	-	0,032049	
46	3006 Растворитель плава СРК-4	1	т/год	0,021451	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	5,59896E-05				0,022099	81,88497
47	3007 Растворитель плава СРК-4	1	т/год	0,015951	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	4,16339E-05				0,016433	

N п/п	Характеристика ста в	ционарно окупності		чника (их со-	Загрязняющее ве	щество		логический пока- затель НДТ	пока: нарн	нологический затель стацио- ого источника совокупности)	газол смеси	сод (объем) воздушной и источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во источ-		Іощность	Наименование	Класс опасно-	Ед. изм.	Величина	Ед. изм.	Величина	Ед. изм.	Величина	выброса, час/год	по стацио- нарному ис-	по ОНВ в целом
		ников	Ед.	Вели чина		сти								точнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
48	5005 Резервуары с мазутом	1	т/год	0,002313	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	6,03719E-06	-	-	-	0,002383	
	4201 Труба		т/год	0,030190	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000153062				0,060414	
49	котла сжигания	1		0,014226	Диметилсульфид	4				0,000133002	_	_	-		
	отходов			0,014226	Метантиол (Метил- меркаптан)	4									
50	6305 Резерву- ары	1	т/год	0,000091	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2,3752E-07	-	-	-	0,000094	
51	6307 TPK	1	т/год	0,000003	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	7,83034E-09	-	-	-	0,000003	
50	9002 Первичный	1	т/год т/год	0,037590	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000100568				0,039694	
52	отстойник	1		0,000940	Метантиол (Метил- меркаптан)	4					-	-	-		
52	9003 Первичный	1	т/год т/год	0,075180	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000201133				0,079387	
53	отстойник	1		0,001879	Метантиол (Метил- меркаптан)	4					-	-	-		
5.4	9004 Первичный	1	т/год т/год	0,053230	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,00014241				0,056209	
54	отстойник			0,001331	Метантиол (Метил- меркаптан)	4					-	-	-		
5.5	9006 Первичный	1	т/год т/год	0,009270	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2,51485E-05				0,009926	
55	отстойник			0,000365	Метантиол (Метил- меркаптан)	4					-	-	-		81,88497
56	9007 Вторичный	1	т/год	0,009100	Дигидросульфид	2	Кг/т	Суммарно 0,25-	Кг/т		-	-	-		

Ν п/п	Характеристика став	ционарно окупності		чника (их со-	Загрязняющее ве	щество		логический пока- затель НДТ	пока: нарн	нологический ватель стацио- ого источника овокупности)	газол смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во источ-	M	Іощность	Наименование	Класс опасно-	Ед. изм.	Величина	Ед. изм.	Величина	Ед. изм.	Величина	выброса, час/год	по стацио- нарному ис-	по ОНВ в целом
		ников	Ед. изм.	Вели чина		сти	230.33		23		223.20			точнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	отстойник		т/год		(Сероводород)			1,00		2,46891E-05				0,009745	
				0,000359	Метантиол (Метил- меркаптан)	4									
57	9008 Вторичный	1	т/год т/год	0,011320	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	3,07106E-05				0,012121	
57	отстойник	1		0,000446	Метантиол (Метил- меркаптан)	4					-	-	-		
	2010 11		т/год т/год	0,072640	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000198097				0,078189	
58	9010 Илонакопитель	I		0,003256	Метантиол (Метил- меркаптан)	4					-	-	-		
50	9013 Преаэратр		т/год т/год	0,017630	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	4,78852E-05				0,018900	
59	аэротенки	I		0,000716	Метантиол (Метил- меркаптан)	4					-	-	-		
60	9014 Преаэратр		т/год т/год	0,023340	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	6,33945E-05				0,025022	81,88497
60	аэротенки	l l		0,000948	Метантиол (Метил- меркаптан)	4					-	-	-		
	9015		т/год	0,061440	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000164748				0,065026	
61	Осадкоуплотнитель	l l		0,001679	Метантиол (Метил- меркаптан)	4					-	-	-		

N п/п	Характеристика стац	(ионарно купності		очника (их со-	Загрязняющее ве	щество		логический пока- затель НДТ	пока: нарн	нологический затель стацио- ого источника совокупности)	газоі смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	N	Тощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед.	Вели чина		опасно- сти	изм.		изм.		изм.			нарному источнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
			т/год	0,009170	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25-1,00	Кг/т						
1	1201 Циклон системы пневмотранспортера	1		0,035640	Диметилсульфид	4				0,000118316	-	-	-	0,0467	
				0,000520	Метантиол (Метил- меркаптан)	4									
			т/год	0,021382	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25-1,00	Кг/т						
2	1202 Кондесатор бункера щепы, терпентинный кондесатор	1		25,449500	Диметилсульфид	4	-			0,066910408	-	-	-	26,40954	
	выход			0,164168	Метантиол (Метил- меркаптан)	4									
			т/год	0,000740	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.001926111	-	-	-	0,724713	
3	1203 Промыватель сучков, бак отходов	1		0,701730	Диметилсульфид	4				0,001836111					81,88497
	of 11102, out o 1110A02			0,000990	Метантиол (Метил- меркаптан)	4	-								
	1204 Вентиляция		т/год	0,663609	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.02(224014	-	-	-	10,39439	
4	транспортера подачи	1		9,358240	Диметилсульфид	4				0,026334914					
	щепы			0,067715	Метантиол (Метил- меркаптан)	4									
			т/год	0,003140	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.000=0200				3,830092	
5	1205 Промывная установка	1		3,713230	Диметилсульфид	4	1			0,009703804	-	-	-		
	yoranobka			0,001400	Метантиол (Метил- меркаптан)	4	-								

N п/п	Характеристика стап	ционарно купності		очника (их со-	Загрязняющее ве	щество		логический пока- затель НДТ	пока: нарн	нологический ватель стацио- ого источника овокупности)	газоі смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	N	Іощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед.	Вели чина		опасно-	изм.		изм.		изм.			нарному источнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	1206 Общеобменная		т/год	0,003221	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,009942745				3,924401	
6	вентиляция промышленного отдела на от-	1		3,804661	Диметилсульфид	4				,,,,,,,,	-	-	-		
	метке 0.0			0,001432	Метантиол (Метил- меркаптан)	4									
			т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.740407.07				0,033739	
7	1207 Вентиляция на отметке 10.0м	1		0,018800	Диметилсульфид	4				8,54812E-05	-	-	-		
				0,001470	Метантиол (Метил- меркаптан)	4	-								
			т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,54812E-05				0,033739	
8	1208 Вентиляция на отметке 10.0м	1		0,018800	Диметилсульфид	4				0,34612E-03	-	-	-		81,88497
				0,001470	Метантиол (Метил- меркаптан)	4									
			т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,54812E-05				0,033739	
9	1209 Вентиляция на отметке 10.0м	1		0,018800	Диметилсульфид	4				0,54612E-05	-	-	-		
				0,001470	Метантиол (Метил- меркаптан)	4									
			т/год	0,012480	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.540457.35				0,033739	
10	1210 Вентиляция на отметке 10.0м	1		0,018800	Диметилсульфид	4				8,54812E-05	-	-	-		
	OTMOTRO TOJUNI			0,001470	Метантиол (Метил- меркаптан)	4	-								
11		1	т/год	0,008920	Дигидросульфид	2	Кг/т	Суммарно 0,25-	Кг/т		-	-	-		

N п/п	Характеристика стац во	ционарно жупності		чника (их со-	Загрязняющее ве	ещество		ологический пока- затель НДТ	пока: нарн	нологический затель стацио- ого источника совокупности)	газол смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во источ-	М Ед.	ощность Вели чина	Наименование	Класс опасно-	Ед. изм.	Величина	Ед. изм.	Величина	Ед. изм.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		ников	г д. изм.	Б ели чина		сти								точнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
					(Сероводород)			1,00						13,358708	
	1211 Циклон пено-			12,921980	Диметилсульфид	4				0,03384522					
	сборник			0,036050	Метантиол (Метил- меркаптан)	4									
	1212 Вентиляция		т/год	0,030760	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,086888	
12	(зона шелокоподогревателя	1		0,051100	Диметилсульфид	4				0,000220137	-	-	-		
)			0,002480	Метантиол (Метил- меркаптан)	4									
	1213 Вентиляция		т/год	0,030760	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000220137				0,086888	
13	(зона щелокоподогревателя	1		0,051100	Диметилсульфид	4				0,000220137	-	-	-		
)			0,002480	Метантиол (Метил- меркаптан)	4									81,88497
	1214 D		т/год	0,023538	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0.000171033				0,063875	
14	1214 Вентиляция (зона варочного	1		0,035594	Диметилсульфид	4				0,000161832	-	-	-		
	котла)			0,002870	Метантиол (Метил- меркаптан)	4									
	1015		т/год	0,023538	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,063875	
15	1215 Вентиляция (зона варочного	1		0,035594	Диметилсульфид	4				0,000161832	-	-	-		
	котла)			0,002870	Метантиол (Метил- меркаптан)	4	-								
16	1216 Вентиляция (зона варочного	1	т/год	0,023538	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000161832	-	-	-	0,063875	

N п/п	Характеристика стан	чника (их со-	Загрязняющее вещество		Технологический пока- затель НДТ		Технологический показатель стационарного источника (их совокупности)		Расход (объем) газовоздушной смеси источника выбросов		Время ра- боты ис- точ- ника(ов)	Технологический норматив выброса, т/год			
	Наименование	Кол-во источ- ников	М Ед.	ощность Вели чина	Наименование	Класс опасно- сти	Ед.	Величина	Ед.	Величина	Ед. изм.	Величина	выброса, час/год	по стацио- нарному ис- точнику (их совокупно- сти)	по ОНВ в целом
			изм.												
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	котла)			0,035594	Диметилсульфид	4									
				0,002870	Метантиол (Метил- меркаптан)	4									81,88497
17	1217 Вентиляция (зона варочного котла)	1	т/год	0,023538	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25-1,00	Кг/т	0,000161832	-	-	-	0,063875	
				0,035594	Диметилсульфид	4									
				0,002870	Метантиол (Метил- меркаптан)	4									
	2101 Баки плот. ч/щ	1	т/год	0,039597	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000210968	1	-	-	0,083269	
18				0,037148	Диметилсульфид	4									
				0,004082	Метантиол (Метил- меркаптан)	4									
19	2201 Вентиляция в/ст №3	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	2 Kr/T	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	-	-	-	0,033572	
				0,018122	Диметилсульфид	4									
20	2202 Вентиляция в/ст №3	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	2 Kг/т 4	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	-	-	-	0,033572	
				0,018122	Диметилсульфид	4									
21	2203 Вентиляция в/ст №3	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	-	-	-	0,033572	
				0,018122	Диметилсульфид	4									
22	2204 Вентиляция в/ст №3	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	-	-	-	0,033572	
				0,018122	Диметилсульфид	4									
23	2205 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид	2	Кг/т	Суммарно 0,25-	Кг/т		-	-	-		

N п/п	Характеристика стац во	ционарно окупност		чника (их со-	Загрязняющее ве	ещество		логический пока- затель НДТ	пока нарн	нологический затель стацио- ого источника совокупности)	газот смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во	M	Іощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед. изм.	Вели чина		опасно- сти	изм.		изм.		изм.			нарному источнику (их совокупности)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	№3				(Сероводород)			1,00		8,50558E-05				0,033572	
				0,018122	Диметилсульфид	4									
24	2206 Вентиляция в/ст	1	т/год	0,014465	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,50558E-05	_	_	-	0,033572	
	№3			0,018122	Диметилсульфид	4									
25	2207 Вентиляция	1	т/год	0,015245	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	9,2847E-05	_		_	0,036647	
23	помещения в/ст №1,2	1		0,020327	Диметилсульфид	4					_	_	_		
26	2208 Вентиляция по-	1	т/год	0,014920	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	9,08581E-05				0,035862	81,88497
20	мещения в/ст №1,2	1		0,019890	Диметилсульфид	4					-	-	-		
27	2401 ИРП-1 скруббер	1	т/год	3,005676	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,007845158				3,096484	
28	2402 ИРП-2 скруббер	1	т/год	8,523438	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,022247146	-	-	-	8,780949	
29	2403 ИРП-3 скруббер	1	т/год	1,837487	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,004796051				1,893001	
			т/год	4,657868	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					6,672103	
30	4101 Реактор разло- жения сульфатного мыла скруббер	1		0,724277	Диметилсульфид	4				0,016904238	_	-	-		
	1.5 1			1,094291	Метантиол (Метил- меркаптан)	4									
31	4102 Вентиляция лаборатории В-45	1	т/год	0,034600	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000110825	-	-	-	0,043743	

N п/п	Характеристика став во	ционарно		чника (их со-	Загрязняющее ве	ещество		ологический пока- затель НДТ	пока: нарн	нологический затель стацио- ого источника совокупности)	газов смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во источ-		Іощность	Наименование	Класс опасно-	Ед. изм.	Величина	Ед. изм.	Величина	Ед. изм.	Величина	выброса, час/год	по стацио- нарному ис-	по ОНВ в целом
		ников	Ед. изм.	Вели чина		сти								точнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
				0,007860	Диметилсульфид	4									
32	4103 Вентиляция В-	1	т/год	0,142500	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,00065091				0,256914	
	46 1 этаж			0,106880	Диметилсульфид	4									
33	4104 Вентиляция В- 41 5 этаж	1	т/год	0,023718	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	6,8646E-05	_	-	-	0,027095	
	41 3 91aж			0,002582	Диметилсульфид	4									
34	4105 Вентиляция В- 43 4 этаж	1	т/год	0,089880	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000273436	_	_		0,107925	
	73 7 31am			0,014880	Диметилсульфид	4						_	_		81,88497
35	4106 Вентиляция В- 48 2 этаж	1	т/год	0,108620	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000485533				0,191640	. ,
	46 Z 91aж			0,077400	Диметилсульфид	4									
			т/год	0,000420	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	6,44959E-05				0,025457	
36	4107 Бак мыла №5	1		0,024220	Диметилсульфид	4				0, 11 /3/L-03	-	-	-		
				0,000070	Метантиол (Метил- меркаптан)	4									
			т/год	0,000850	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2.510/E-05				0,013856	
37	4108 Бак мыла ч/щ №1	1		0,012480	Диметилсульфид	4				3,5106E-05	-	-	-		
				0,000120	Метантиол (Метил- меркаптан)	4	-								
38	4109 Бак мыла ч/щ	1	т/год	0,000850	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	3,5106E-05	-	-	-	0,013856	
	№2			0,012480	Диметилсульфид	4									

N п/п	Характеристика ста во	ционарно		очника (их со-	Загрязняющее ве	ещество		ологический пока- затель НДТ	пока нарн	нологический затель стацио- ого источника совокупности)	газов смеси	код (объем) воздушной и источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив оса, т/год
	Наименование	Кол-во источ-		Іощность	Наименование	Класс опасно-	Ед. изм.	Величина	Ед. изм.	Величина	Ед. изм.	Величина	выброса, час/год	по стацио- нарному ис-	по ОНВ в целом
		ников	Ед.	Вели чина		сти								точнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
				0,000120	Метантиол (Метил- меркаптан)	4									
			т/год	0,000850	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	3,59413E-05				0,014186	
39	4110 Бак мыла ч/щ №3	1		0,012800	Диметилсульфид	4				3,39413E-03	-	-	-		
				0,000120	Метантиол (Метил- меркаптан)	4									81,88497
			т/год	0,000850	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	3,5106E-05				0,013856	
40	4111 Бак мыла ч/щ №4	1		0,012480	Диметилсульфид	4				5,5100E-05	-	-	-		
				0,000120	Метантиол (Метил- меркаптан)	4									
41	3001 СРК-2,3,4 скрубберная установка	1	т/год	0,456135	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,001190564	-	-	-	0,469916	
42	3002 Растворитель плава СРК-2	1	т/год	0,042971	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000112159				0,044269	
43	3003 Растворитель плава СРК-2	1	т/год	0,034284	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,94852E-05				0,035320	
44	3004 Растворитель плава СРК-3	1	т/год	0,045350	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000118369	-	-	-	0,046720	
45	3005 Растворитель плава СРК-3	1	т/год	0,031109	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	8,1198E-05	-	-	-	0,032049	
46	3006 Растворитель плава СРК-4	1	т/год	0,021451	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	5,59896E-05				0,022099	

N п/п	Характеристика ста в	ционарно окупності		чника (их со-	Загрязняющее ве	ещество		элогический пока- затель НДТ	пока: нарн	нологический затель стацио- ого источника совокупности)	газол смеси	од (объем) воздушной источника ыбросов	Время ра- боты ис- точ- ника(ов)		еский норматив ооса, т/год
	Наименование	Кол-во	M	Іощность	Наименование	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина	выброса, час/год	по стацио-	по ОНВ в целом
		источ- ников	Ед. изм.	Вели чина		опасно-	изм.		изм.		изм.			нарному источнику (их совокупно- сти)	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
47	3007 Растворитель плава СРК-4	1	т/год	0,015951	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	4,16339E-05				0,016433	
48	5005 Резервуары с мазутом	1	т/год	0,002313	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	6,03719E-06	-	-	-	0,002383	01 00 407
	4201 Труба		т/год	0,030190	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,060414	81,88497
49	котла сжигания	1		0,014226	Диметилсульфид	4				0,000153062	_	-	-		
	отходов			0,014226	Метантиол (Метил- меркаптан)	4									
50	6305 Резерву- ары	1	т/год	0,000091	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2,3752E-07	-	-	-	0,000094	
51	6307 TPK	1	т/год	0,000003	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	7,83034E-09	-	-	-	0,000003	
52	9002 Первичный	1	т/год т/год	0,037590	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000100568				0,039694	
32	отстойник	1		0,000940	Метантиол (Метил- меркаптан)	4					-	-	-		
52	9003 Первичный	1	т/год т/год	0,075180	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000201133				0,079387	
53	отстойник	1		0,001879	Метантиол (Метил- меркаптан)	4	-				-	-	-		
5.4	9004 Первичный	1	т/год т/год	0,053230	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,00014241				0,056209	
54	отстойник	1		0,001331	Метантиол (Метил- меркаптан)	4					-	-	-		
55	9006 Первичный отстойник	1	т/год т/год	0,009270	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2,51485E-05	-	-	-	0,009926	

	_		чника (их со-	Загрязняющее ве	щество		логический пока- затель НДТ	показ нарн	ого источника	газоі смеси	источника	Время работы источника(ов)		еский норматив оса, т/год
Наименование	Кол-во источ- ников	М	Іощность Вели чина	Наименование	Класс опасно- сти	Ед. изм.	Величина	Ед. изм.	Величина	Ед. изм.	Величина	выброса, час/год	по стацио- нарному ис- точнику (их	по ОНВ в целом
		изм.											совокупно-	
2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
			0,000365	Метантиол (Метил- меркаптан)	4									
9007 Вторичный	1	т/год т/год	0,009100	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	2,46891E-05		_		0,009745	81,88497
отстойник	1		0,000359	Метантиол (Метил- меркаптан)	4					-	-			
9008 Вторичный	1	т/год т/год	0,011320	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	3,07106E-05				0,012121	
отстойник	1		0,000446	Метантиол (Метил- меркаптан)	4					-	-	-		
0010 H	1	т/год т/год	0,072640	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	0,000198097				0,078189	
9010 Илонакопитель	1		0,003256	Метантиол (Метил- меркаптан)	4					-	-	-		
9013 Преаэратр	1	т/год т/год	0,017630	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	4,78852E-05				0,018900	
аэротенки	1		0,000716	Метантиол (Метил- меркаптан)	4					-	-	-		
9014 Преаэратр		т/год т/год	0,023340	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т	6,33945E-05				0,025022	
аэротенки	l		0,000948	Метантиол (Метил- меркаптан)	4					-	-	-		
		т/год	0,061440	Дигидросульфид (Сероводород)	2	Кг/т	Суммарно 0,25- 1,00	Кг/т					0,065026	81,88497
9015 Осадкоуплотнитель	1		0,001679	Метантиол (Метил- меркаптан)	4				0,000164748	-	-	-		
	Родот Вторичный отстойник 9008 Вторичный отстойник 9010 Илонакопитель 9013 Преаэратр аэротенки 9014 Преаэратр аэротенки	Наименование Кол-во источников 2 3 9007 Вторичный отстойник 1 9008 Вторичный отстойник 1 9010 Илонакопитель 1 9013 Преаэратр аэротенки 1 9014 Преаэратр аэротенки 1 9015 1	вокупности) Наименование источников Кол-во источников М. Ед. изм. 2 3 4 9007 Вторичный отстойник 1 Т/год т/г	Наименование ников Кол-во источников Мощность 2 3 4 5 9007 Вторичный отстойник 1 7/год 7	Наименование Кол-во источникование Кол-во источникование Ед. изм. Вели чина Наименование	Наименование Колью источников Ед. изм. Вели чина источников Ед. изм. Вели чина источников Тугод одоозаб Метантиол (Метилмеркаптан) Одоозаб Метантиол (Метилмеркаптан) Одоозаб Одоозаб	Наименование Кол-во источинков Ед. изм. Вели чипа Класс опасности Изм. Вели чипа Класс опасности Изм. Вели чипа Класс опасности Изм. Изм.	Наименование Кольво источников Ед. ням. Вели чина нервание Ед. ням. Наименование сти Наименов	Вокупности Вокупность Важен ВДТ Поменания Важен ВДТ В	Вокушности Наименование Кол-но источника (их сонокупности) Наименование источника (их сонокупности) Наименование опасности Наименован	Наименование Кол-но инкова Кол-но инков	Наимскования Кол-ко пісто- пінко пінко пінко пінко пінкова пінко п	Наименование Параден Предоставляющей (Серововоров) П	Haimenoration Haimenora

2.2.3. Технологические показатели источников выбросов загрязняющих веществ, обеспечивающие выполнение технологических нормативов выбросов

Наименование стацио- нарного источника (их	Номер источ-	Наименование источника вы-	Загрязняющее во	ещество	чение тех ского пок	льное зна- кнологиче- азателя ис- выбросов	Приме- чание
совокупности)	ника вы- броса	броса	Наименование	Класс опасно- сти	мг/куб.м	г/сек	
1	2	3	4	5	6	7	8
		Циклон	Дигидросульфид (Сероводород)	2	1,760	0,0003400	
Циклон системы пневмотранспортера	1201	системы пневмотранспо	Диметилсульфид	4	6,840	0,0015200	
		ртера	Метантиол (Ме- тилмеркаптан)	4	0,100	0,0000200	
		Кондесатор	Дигидросульфид (Сероводород)	2	1,380	0,0014169	
Кондесатор бункера щепы, терпентинный	1202	бункера щепы, терпентинный	Диметилсульфид	4	1200,670	1,2327703	
кондесатор выход		кондесатор выход	Метантиол (Ме- тилмеркаптан)	4	7,110	0,0073010	
		П	Дигидросульфид (Сероводород)	2	1,700	0,0000400	
Промыватель сучков, бак отходов	1203	Промыватель сучков, бак от-	Диметилсульфид	4	1699,650	0,0346400	
		ходов	Метантиол (Ме- тилмеркаптан)	4	2,750	0,0000600	
D		D	Дигидросульфид (Сероводород)	2	0,980	0212761	
Вентиляция транспортера подачи	1204	Вентиляция транспортера	Диметилсульфид	4	13,820	0,3000359	
щепы		подачи щепы	Метантиол (Ме- тилмеркаптан)	4	0,100	0,0021761	
			Дигидросульфид (Сероводород)	2	0,540	0,0001300	
Промывная установка	1205	Промывная установка	Диметилсульфид	4	637,770	0,2070000	
			Метантиол (Ме- тилмеркаптан)	4	0,240	0,00080000	
		Общеобменная	Дигидросульфид (Сероводород)	2	0,760	0,0001033	
Общеобменная вентиляция промышленного отдела на отметке 0.0	1206	вентиляция промышлен- ного отдела на	Диметилсульфид	4	0,950	0,1219818	
		отметке 0.0	Метантиол (Метилмеркаптан)	4	0,100	0,0000459	

Наименование стацио- нарного источника (их	Номер источ-	Наименование источника вы-	Загрязняющее во	ещество	чение тех	льное зна- кнологиче- азателя ис- выбросов	Приме- чание
совокупности)	ника вы- броса	броса	Наименование	Класс опасно- сти	мг/куб.м	г/сек	
1	2	3	4	5	6	7	8
			Дигидросульфид (Сероводород)	2	0,850	0,0005400	
Вентиляция на отметке 10.0м	1207	Вентиляция на отметке 10.0м	Диметилсульфид	4	1,280	0,0012400	
10.0.1			Метантиол (Ме- тилмеркаптан)	4	0,100	0,0000500	
			Дигидросульфид (Сероводород)	2	0,850	0,0005400	
Вентиляция на отметке 10.0м	1208	Вентиляция на отметке 10.0м	Диметилсульфид	4	1,280	0,0012400	
			Метантиол (Ме- тилмеркаптан)	4	0,100	0,0000500	
			Дигидросульфид (Сероводород)	2	0,850	0,0005400	
Вентиляция на отметке 10.0м	1209	Вентиляция на отметке 10.0м	Диметилсульфид	4	1,280	0,0012400	
10.0.1			Метантиол (Ме- тилмеркаптан)	4	0,100	0,0000500	
			Дигидросульфид (Сероводород)	2	0,850	0,0005400	
Вентиляция на отметке 10.0м	1210	Вентиляция на отметке 10.0м	Диметилсульфид	4	1,280	0,0012400	
			Метантиол (Ме- тилмеркаптан)	4	0,100	0,0000500	
			Дигидросульфид (Сероводород)	2	2,370	0,0006100	
Циклон пеносборник	1211	Циклон пено- сборник	Диметилсульфид	4	3433,450	0,4632200	
		•	Метантиол (Ме- тилмеркаптан)	4	9,580	0,0030300	
		Вентиляция	Дигидросульфид (Сероводород)	2	1,24	0,0011700	
Вентиляция (зона щелокоподогревателя)	1212	(зона щелокоподогре	Диметилсульфид	4	2,06	0,0027400	
		вателя)	Метантиол (Ме- тилмеркаптан)	4	0,100	0,0000800	
Вентиляция (зона	1213	Вентиляция (зона	Дигидросульфид (Сероводород)	2	1,240	0,0011700	
щелокоподогревателя)		щелокоподогре вателя)	Диметилсульфид	4	2,060	0,0027400	

Наименование стацио- нарного источника (их	Номер источ-	Наименование источника вы-	Загрязняющее в	ещество	чение тех	льное зна- кнологиче- азателя ис- выбросов	Приме- чание
совокупности)	ника вы- броса	броса	Наименование	Класс опасно- сти	мг/куб.м	г/сек	
1	2	3	4	5	6	7	8
			Метантиол (Метилмеркаптан)	4	0,100	0,0000800	
		Вентиляция	Дигидросульфид (Сероводород)	2	0,820	0,0007547	
Вентиляция (зона варочного котла)	1214	(зона варочного	Диметилсульфид	4	1,240	0,0011412	
•		котла)	Метантиол (Метилмеркаптан)	4	0,100	0,0000920	
		Вентиляция	Дигидросульфид (Сероводород)	2	0,820	0,0007547	
Вентиляция (зона варочного котла)	1215	(зона варочного	Диметилсульфид	4	1,240	0,0011412	
,		котла)	Метантиол (Метилмеркаптан)	4	0,100	0,0000920	
		Вентиляция	Дигидросульфид (Сероводород)	2	0,820	0,0007547	
Вентиляция (зона варочного котла)	1216	(зона варочного	Диметилсульфид	4	1,240	0,0011412	
•		котла)	Метантиол (Метилмеркаптан)	4	0,100	0,0000920	
		Вентиляция	Дигидросульфид (Сероводород)	2	0,820	0,0007547	
Вентиляция (зона варочного котла)	1217	(зона варочного	Диметилсульфид	4	1,240	0,0011412	
•		котла)	Метантиол (Метилмеркаптан)	4	0,100	0,0000920	
			Дигидросульфид (Сероводород)	2	0,970	0,0012695	
Баки плот. ч/щ	2101	Баки плот. ч/щ	Диметилсульфид	4	0,910	0,0011910	
			Метантиол (Метилмеркаптан)	4	0,100	0,0001309	
Вентиляция в/ст №3	2201	Вентиляция в/ст №3	Дигидросульфид (Сероводород)	2	0,380	0,0004698	
		R/CL M52	Диметилсульфид	4	0,470	0,0005810	
Вентиляция в/ст №3	2202	Вентиляция в/ст №3	Дигидросульфид (Сероводород)	2	0,380	0,0004698	

Наименование стацио- нарного источника (их	Номер источ-	Наименование источника вы-	Загрязняющее во	ещество	чение тех	льное зна- кнологиче- азателя ис- выбросов	Приме- чание
совокупности)	ника вы- броса	броса	Наименование	Класс опасно- сти	мг/куб.м	г/сек	
1	2	3	4	5	6	7	8
			Диметилсульфид	4	0,470	0,0005810	
Вентиляция в/ст №3	2203	Вентиляция	Дигидросульфид (Сероводород)	2	0,380	0,0004698	
		в/ст №3	Диметилсульфид	4	0,470	0,0005810	
Вентиляция в/ст №3	2204	Вентиляция	Дигидросульфид (Сероводород)	2	0,380	0,0004698	
		в/ст №3	Диметилсульфид	4	0,470	0,0005810	
Вентиляция в/ст №3	2205	Вентиляция	Дигидросульфид (Сероводород)	2	0,380	0,0004698	
		в/ст №3	Диметилсульфид	4	0,470	0,0005810	
Вентиляция в/ст №3	2206	Вентиляция	Дигидросульфид (Сероводород)	2	0,380	0,0004698	
		в/ст №3	Диметилсульфид	4	0,470	0,0005810	
Вентиляция помещения	2207	Вентиляция помещения в/ст	Дигидросульфид (Сероводород)	2	0,330	0,0004888	
в/ст №1,2		№ 1,2	Диметилсульфид	4	0,440	0,0006517	
Вентиляция помещения	2208	Вентиляция по-мещения в/ст	Дигидросульфид (Сероводород)	2	0,330	0,0005400	
в/ст №1,2	2200	No1,2	Диметилсульфид	4	0,440	0,0011200	
ИРП-1 скруббер	2401	ИРП-1 скруббер	Дигидросульфид (Сероводород)	2	29,570	0,1874913	
ИРП-2 скруббер	2402	ИРП-2 скруббер	Дигидросульфид (Сероводород)	2	85,200	0,5203369	
ИРП-3 скруббер	2403	ИРП-3 скруббер	Дигидросульфид (Сероводород)	2	11,450	0,0616441	
		Реактор разло-	Дигидросульфид (Сероводород)	2	1628,290	0,4658734	
Реактор разложения сульфатного мыла	4101	жения сульфат-	Диметилсульфид	4	391,530	0,1120214	
скруббер		скруббер	Метантиол (Ме- тилмеркаптан)	4	236,100	0,0675510	
Вентиляция лаборатории В-45	4102	Вентиляция лаборатории В-	Дигидросульфид (Сероводород)	2	1,320	0,0014500	

Наименование стацио- нарного источника (их	Номер источ-	Наименование источника вы-	Загрязняющее ве	ещество	чение тех ского пок	льное зна- кнологиче- азателя ис- выбросов	Приме- чание
совокупности)	ника вы- броса	броса	Наименование	Класс опасно- сти	мг/куб.м	г/сек	
1	2	3	4	5	6	7	8
		45	Диметилсульфид	4	0,30	0,0003700	
Вентиляция В-46 1 этаж	4103	Вентиляция В- 46 1 этаж	Дигидросульфид (Сероводород)	2	1,720	0,0005110	
		40 ГЭТаж	Диметилсульфид	4	1,29	0,0050900	
Вентиляция В-41 5 этаж	4104	Вентиляция В- 41 5 этаж	Дигидросульфид (Сероводород)	2	1,470	0,0007957	
		41 J 91aж	Диметилсульфид	4	0,160	0,0000866	
Вентиляция В-43 4 этаж	4105	Вентиляция В- 43 4 этаж	Дигидросульфид (Сероводород)	2	1,450	0,0043700	
		45 4 9Tax	Диметилсульфид	4	0,240	0,0010600	
Вентиляция В-48 2 этаж	4106	Вентиляция В-	Дигидросульфид (Сероводород)	2	1,670	0,0038800	
		48 2 этаж	Диметилсульфид	4	1,190	0,0030500	
			Дигидросульфид (Сероводород)	2	0,620	0,0000100	
Бак мыла №5	4107	Бак мыла №5	Диметилсульфид	4	36,150	0,0008100	
			Метантиол (Ме- тилмеркаптан)	4	0,100	0,0000022	
			Дигидросульфид (Сероводород)	2	-	0,0000289	
Бак мыла ч/щ №1	4108	Бак мыла ч/щ №1	Диметилсульфид	4	-	0,0004254	
			Метантиол (Ме- тилмеркаптан)	4	-	0,0000274	
			Дигидросульфид (Сероводород)	2	-	0,0000289	
Бак мыла ч/щ №2	4109	Бак мыла ч/щ №2	Диметилсульфид	4	-	0,0004254	
			Метантиол (Ме- тилмеркаптан)	4	-	0,0000274	
Бак мыла ч/щ №3	4110	Бак мыла ч/щ №3	Дигидросульфид (Сероводород)	2	-	0,0000289	
		 14⊼Ω	Диметилсульфид	4	-	0,0004254	

Наименование стацио- нарного источника (их	Номер источ-	Наименование источника вы-	Загрязняющее в	ещество	чение тех	льное зна- кнологиче- азателя ис- выбросов	Приме- чание
совокупности)	ника вы- броса	броса	Наименование	Класс опасно- сти	мг/куб.м	г/сек	
1	2	3	4	5	6	7	8
			Метантиол (Ме- тилмеркаптан)	4	-	0,0000274	
			Дигидросульфид (Сероводород)	2	0,700	0,0000300	
Бак мыла ч/щ №4	4111	Бак мыла ч/щ №4	Диметилсульфид	4	10,300	0,0005600	
			Метантиол (Ме- тилмеркаптан)	4	0,100	0,0000040	
СРК-2,3,4 скрубберная установка	3001	СРК-2,3,4 скрубберная установка	Дигидросульфид (Сероводород)	2	0,310	0,0293298	
Растворитель плава СРК-2	3002	Растворитель плава СРК-2	Дигидросульфид (Сероводород)	2	1,140	0,0014416	
Растворитель плава СРК-2	3003	Растворитель плава СРК-2	Дигидросульфид (Сероводород)	2	1,140	0,0011502	
Растворитель плава СРК-3	3004	Растворитель плава СРК-3	Дигидросульфид (Сероводород)	2	1,190	0,0015214	
Растворитель плава СРК-3	3005	Растворитель плава СРК-3	Дигидросульфид (Сероводород)	2	1,160	0,0010437	
Растворитель плава СРК-4	3006	Растворитель плава СРК-4	Дигидросульфид (Сероводород)	2	0,700	0,0007196	
Растворитель плава СРК-4	3007	Растворитель плава СРК-4	Дигидросульфид (Сероводород)	2	0,600	0,0005351	
Резервуары с мазутом	5005	Резервуары с мазутом	Дигидросульфид (Сероводород)	2	-	0,0018792	
			Дигидросульфид (Сероводород)	2	0,190	0,0009068	
Труба котла сжигания отходов	4201	Труба котла сжигания	Диметилсульфид	4	0,100	0,0004773	
51110402		отходов	Метантиол (Ме- тилмеркаптан)	4	0,100	0,0004773	
Резервуары	6305	Резервуары	Дигидросульфид (Сероводород)	2	-	0,0000029	
ТРК	6307	ТРК	Дигидросульфид (Сероводород)	2	-	0,0000049	
Первичный отстойник	9002	Первичный отстойник	Дигидросульфид (Сероводород)	2	-	0,0009240	

Наименование стацио- нарного источника (их	Номер источ-	Наименование источника вы-	Загрязняющее в	ещество	чение тех	льное зна- кнологиче- азателя ис- выбросов	Приме- чание
совокупности)	ника вы- броса	броса	Наименование	Класс опасно- сти	мг/куб.м	г/сек	
1	2	3	4	5	6	7	8
			Метантиол (Ме- тилмеркаптан)	4	-	0,0000231	
Подружим ў отого ўчум	0002	Первичный	Дигидросульфид (Сероводород)	2	-	0,0018290	
Первичный отстойник	9003	отстойник	Метантиол (Ме- тилмеркаптан)	4	-	0,0000457	
	2004	Первичный	Дигидросульфид (Сероводород)	2	-	0,0038000	
Первичный отстойник	9004	отстойник	Метантиол (Ме- тилмеркаптан)	4	-	0,0000950	
	0005	Первичный	Дигидросульфид (Сероводород)	2	-	0,0003050	
Первичный отстойник	9006	отстойник	Метантиол (Ме- тилмеркаптан)	4	-	0,0000120	
		Вторичный	Дигидросульфид (Сероводород)	2	-	0,0002970	
Вторичный отстойник	9007	отстойник	Метантиол (Ме- тилмеркаптан)	4	-	0,0000117	
	0000	Вторичный	Дигидросульфид (Сероводород)	2	-	0,0002810	
Вторичный отстойник	9008	отстойник	Метантиол (Метилмеркаптан)	4	-	0,0000111	
	0010		Дигидросульфид (Сероводород)	2	-	0,0017840	
Илонакопитель	9010	Илонакопитель	Метантиол (Метилмеркаптан)	4	-	0,0000800	
	0012	Преаэратр	Дигидросульфид (Сероводород)	2	-	0,0006720	
Преаэратр аэротенки	9013	аэротенки	Метантиол (Ме- тилмеркаптан)	4	-	0,0000273	
	001:	Преаэратр	Дигидросульфид (Сероводород)	2	-	0,0008500	
Преаэратр аэротенки	9014	аэротенки	Метантиол (Ме- тилмеркаптан)	4	-	0,0000345	
Осадкоуплотнитель	9015	Осадкоуплотни	Дигидросульфид	2	-	0,0014940	

Наименование стацио- нарного источника (их	Номер источ-	Наименование источника вы-	Загрязняющее ве	щество	Максима чение тех ского пок точника	Приме- чание	
совокупности)	ника вы- броса	броса	Наименование	Класс опасно- сти	мг/куб.м	г/сек	
1	2	3	4	5	6	7	8
		тель	(Сероводород)				
			Метантиол (Ме- тилмеркаптан)	4	-	0,0000408	

2.3. Расчеты технологических нормативов сбросов

2.3.1. Сведения о стационарных источниках (их совокупности), входящих в состав объекта ОНВ, для которых установлены технологические показатели сбросов НДТ

N п/п	Наименование стационарного источника (их совокупности)	Количество стацио- нарных источников (их совокупности), входящих в состав объекта ОНВ	Количество загрязняющих веществ, для которых установлены технологические показатели сбросов НДТ <1>	Примечание
1	2	3	4	5
1	Промплощадка "АО "Сегежский ЦБК", Выпуск №6 (в водный объект озеро Выгозеро)	1	3	

2.3.2. Показатели для расчета технологических нормативов сбросов

N п/п	Характерис источника			-	Загрязн веще			логический затель НДТ	показ навли стаци точни	ологический ватель, уста- иваемый для онарного ис- ика (их сово- упности)	вод		Время работы источ- ника(о в) сброса, час/год	нормати	гический в сброса, год
	Наимено-	Кол	Mo	щность	Наиме-	Класс	Ед.	Величина	Ед.	Величина	Ед.	Величина		по стаци-	по ОНВ в
	вание (но- мер вы- пуска)	-во	Ед.	Вели- чина	нова- ние	опас- ности	изм.		изм.		ИЗМ			онарному источ- нику (их совокуп- ности)	целом
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
								2022 год	Į						
1	Промпло- щадк (Вы- пуск №6	1	м ³ /час	11930	Взве- шенные вещества	отсут	кг\т	0.19-1.2	кг\т	1,32	Тос			473,64	473,64
	(озеро Выго-				ХПК	отсут	кг\т	5-12	кг\т	21,88		8760	4736,4	4736,4	
					БПК полн	отсут	кг\т	0.3-0.7	кг\т	1,95				276,29	276,29
		l			•			2023 год	Į				l		
1	Промпло- щадк (Вы- пуск №6	1	м³/час	11930	Взве- шенные вещества	4	кг\т	0,9-1,2	кг\т	1,32		29.836695	8760	473,64	473,64

	(озеро Выго-				ХПК	отсут	кг\т	5-12	кг\т	19,25	Тыс. м3\г			4736,4	4736,4
					БПК полн	отсут	кг\т	0.3-0.7	кг\т	1,36	од			276,29	276,29
								2024 го	Д						
1	Промпло- щадк (Вы- пуск №6 (озеро Выго-	1	м³/час	11930	Взве- шенные вещества	отсут	кг∖т	0,9-1,2	KL/T	1,07	Тыс. м3\г од			422,329	422,329
	зеро)				ХПК	отсут	кг\т	5-12	KL/T	16,37		29.836695	8760	4736,4	4736,4
					БПК полн	отсут	кг∖т	0.3-0.7	KL/T	1,36				276,29	276,29
								2025 го	Д						
1	Промпло- щадк (Вы- пуск №6 (озеро Выго-	1	м³/час	11930	Взве- шенные вещества	отсут	кг\т	0,9-1,2	KL/T	1,07	Тыс. м3\г од			422,329	422,329
	зеро)				ХПК	отсут	кг∖т	5-12	кг\т	16,37		27.336695	8760	4736,4	4736,4
					БПК полн	отсут	кг∖т	0.3-0.7	KT\T	1,36				276,29	276,29
								2026 го	Д						
1	Промпло- щадк (Вы- пуск №6 (озеро Выго-	1	м³/час	11930	Взве- шенные вещества	отсут	кг\т	0,9-1,2	KL/T	1,07	Тыс. м3\г од	27.336695	8760	422,329	422,329
	зеро)				ХПК	отсут	кг\т	5-12	кг\т	14,8				5841,56	5841,56

					БПК полн	отсут	кг\т	0.3-0.7	кг\т	0,85				335,495	335,495
								2027 го	Д						
1	Промпло- щадк (Вы- пуск №6 (озеро Выго-	1	м ³ /час	11930	Взве- шенные вещества	отсут	кг∖т	0,9-1,2	KL/T	1,07	Тыс. м3\г од			422,329	422,329
	зеро)				ХПК	отсут	кг\т	5-12	кг\т	11,5		27.336695	8760	4539,05	4539,05
					БПК полн	отсут	кг\т	0.3-0.7	кг\т	0,65				256,555	256,555
		I	<u> </u>		I I			2028 го	<u>. </u>						
1	Промпло- щадк (Вы- пуск №6	1	м³/час	11930	Взве- шенные вещества	отсут	кг\т	0,9-1,2	кг\т	1,07	Тыс. м3\г од			422,329	422,329
	(озеро Выго- зеро)				ХПК	отсут	кг\т	5-12	кг\т	11,5		27.336695	8760	4539,05	4539,05
					БПК полн	отсут	кг\т	0.3-0.7	кг\т	0,65				256,555	256,555
								2029 го	Д						
1	Промпло- щадк (Вы- пуск №6	1	м ³ /час	11930	Взве- шенные вещества	отсут	кг\т	0,9-1,2	KL/T	1,07	Тыс. м3\г од			422,329	422,329
	(озеро Выго- зеро)				ХПК	отсут	кг\т	5-12	кг\т	11,5		27.336695	8760	4539,05	4539,05
					БПК полн	отсут	кг\т	0.3-0.7	кг\т	0,65				256,555	256,555

2.3.3. Технологические показатели источников сбросов загрязняющих веществ, обеспечивающие выполнение технологических нормативов сбросов

Наименование стационарного источника (их совокупности)	Порядко- вый номер источника сброса (вы-	Наимено- вание вод- ного объ- екта	_	зняющее ве- щество чение технологиче- ского показателя источника сбросов		Примеча- ние	
	пуска)		Наиме- нование	Класс опасно- сти	мг/куб. м	г/ч	
1	2	3	4	5	6	7	8
Промплощадка		anana Diri	Взвешен- ные ве- щества	4	13690	104916,16	
(Выпуск №6 (озеро Выгозеро)	6	озеро Вы- гозеро	ХПК	-	207000	2469489,69	
			БПК полн	-	12000	391138,69	

2.4. Технологические нормативы физических воздействий

2.4.1. Сведения об объектах, входящих в состав объекта ОНВ

N п/п	Наименование стационар- ного источника (их сово- купности)	Количество стационарных источников (их совокупности), входящих в состав объекта ОНВ	Вид физического воздействия
1	2	3	4

Технологические нормативы физических воздействий не разрабатываются и не устанавливаются в связи с отсутствием технологических показателей физических воздействий в отраслевом информационно-техническом справочнике по наилучшим технологиям

2.4.2. Технологические нормативы физических воздействий

N п/п	Наименование стацио- нарного источника (их	Наименование вида фи- зического воздействия	Технологический зического воздей жающую	ствия на окру-
	совокупности)	на окружающую среду	Единица измере- ния	Величина
1	2	3	4	5

Технологические нормативы физических воздействий не разрабатываются и не устанавливаются в связи с отсутствием технологических показателей физических воздействий в отраслевом информационно-техническом справочнике по наилучшим технологиям

Раздел III. Нормативы допустимых выбросов высокотоксичных веществ, веществ, обладающих канцерогенными, мутагенными свойствами (веществ I, II класса опасности), при наличии таких веществ в выбросах загрязняющих веществ, соответствующие санитарно-эпидемиологическим требованиям и иным требованиям, установленным законодательством Российской Федерации, а также расчеты таких нормативов

Код	Наименование вещества														
		2022	2	2	023	2	2024	2	025	2	026	2	027	20)28
	_	г/с	т/год	г/сек	т/год										
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0143	Марганец и его соединения (в пересчете на марганца (IV) оксид)	0,0095706	0,015244	0,0095706	0,015244	0,0095706	0,015244	0,0095706	0,015244	0,0095706	0,015244	0,0095706	0,015244	0,0095706	0,015244
0164	Никель оксид (в пересчете і никель)	0,0000736	0,000036	0,0000736	0,000036	0,0000736	0,000036	0,0000736	0,000036	0,0000736	0,000036	0,0000736	0,000036	0,0000736	0,000036
0203	Хром (Хром шестива- лентный) (в пересчете на хрома (VI) оксид)	0,0023324	0,000295	0,0023324	0,000295	0,0023324	0,000295	0,0023324	0,000295	0,0023324	0,000295	0,0023324	0,000295	0,0023324	0,000295
0322	Серная кислота (по молекуле H2SO4)	0,0003169	0,000377	0,0003169	0,000377	0,0003169	0,000377	0,0003169	0,000377	0,0003169	0,000377	0,0003169	0,000377	0,0003169	0,000377
0333	Дигидросульфид (Серовод род)	1,3338025	20,550558	1,3338025	20,550558	1,3338025	20,550558	1,3338025	20,550558	1,3338025	20,550558	1,3338025	20,550558	1,3338025	20,550558
0342	Фториды газообразные	0,0031162	0,001189	0,0031162	0,001189	0,0031162	0,001189	0,0031162	0,001189	0,0031162	0,001189	0,0031162	0,001189	0,0031162	0,001189
0344	Фториды плохо раствори- мые	0,0062075	0,001729	0,0062075	0,001729	0,0062075	0,001729	0,0062075	0,001729	0,0062075	0,001729	0,0062075	0,001729	0,0062075	0,001729
0602	Бензол	0,0430100	0,002432	0,0430100	0,002432	0,0430100	0,002432	0,0430100	0,002432	0,0430100	0,002432	0,0430100	0,002432	0,0430100	0,002432
0703	Бенз/а/пирен (3,4- Бензпирен)	0,0001734	0,005543	0,0001734	0,005543	0,0001734	0,005543	0,0001734	0,005543	0,0001734	0,005543	0,0001734	0,005543	0,0001734	0,005543
1071	Гидроксибензол (Фенол)	0,0079140	0,252089	0,0079140	0,252089	0,0079140	0,252089	0,0079140	0,252089	0,0079140	0,252089	0,0079140	0,252089	0,0079140	0,252089
1325	Формальдегид	0,0085840	0,261648	0,0085840	0,261648	0,0085840	0,261648	0,0085840	0,261648	0,0085840	0,261648	0,0085840	0,261648	0,0085840	0,261648
2904	Мазутная зола тепло- электростанций (в пе- ресчете на ванадий)	0,4718496	6,786806	0,4718496	6,786806	0,4718496	6,786806	0,4718496	6,786806	0,4718496	6,786806	0,4718496	6,786806	0,4718496	6,786806
Всего	веществ :	1,8869507	27,87795	1,8869507	1,8869507	1,8869507	27,87795	1,8869507	27,87795	1,8869507	27,87795	1,8869507	27,87795	27,87795	27,87795
В том	числе твердых:	0,4900337	6,80411	0,4900337	0,4900337	0,4900337	6,80411	0,4900337	6,80411	0,4900337	6,80411	0,4900337	6,80411	6,80411	6,80411
Жидк	их/газообразных :	1,396917	21,07384	1,396917	1,396917	1,396917	21,07384	1,396917	21,07384	1,396917	21,07384	1,396917	21,07384	21,07384	21,07384

Раздел IV. Нормативы допустимых сбросов высокотоксичных веществ, веществ, обладающих канцерогенными, мутагенными свойствами (веществ I, II класса опасности), при наличии таких веществ в сбросах загрязняющих веществ, соответствующие санитарно-эпидемиологическим требованиям и иным требованиям, установленным законодательством Российской Федерации, а также расчеты таких нормативов

№ п/п	,	Класс опас- ности	Утвержденный нор- матив допустимого сброса веществ	яне	зарь		ржденный враль	<u> </u>	в допустим арт		а веществ оель	Ма	ìй
			мг/дм3	г/ч	т/мес	г/ч	т/мес	г/ч	т/мес	г/ч	т/мес	г/ч	т/мес
1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	нитрит - ион	4э/2	0,024	130,42	0,07272	130,42	0,06889	130,42	0,07788	130,42	0,07702	130,42	0,07206
2	метанол	4/2	0,1	543,40	0,30300	543,40	0,28703	543,40	0,32451	543,40	0,32090	543,40	0,30026

Утвержденный норматив допустимого сброса веществ														Утвержденный норматив допу-
И	июнь июль август сентябрь октябрь ноябрь декабрь												стимого сброса веществ	
г/ч	т/мес	г/ч	т/мес	г/ч	т/мес	г/ч	т/мес	г/ч	т/мес	г/ч	т/мес	г/ч	т/мес	т/год
15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
130,42	0,06690	130,42	0,08389	130,42	0,08353	130,42	0,07854	130,42	0,07706	130,42	0,07416	130,42	0,07866	0,9113
543,40	0,27877	543,40	0,34953	543,40	0,34806	543,40	0,32725	543,40	0,32109	543,40	0,30898	543,40	0,32776	3,7971

^{*}Расчетв т/год производится суммированием т/мес.

Примечание: Решение № 436 о предоставлении водного объекта в пользование, срок действия до 31.03.2024г

Раздел IV.I. Нормативы допустимых сбросов загрязняющих веществ для объекта централизованной системы водоотведения поселений или городских округов, а также расчеты таких нормативов

Нормативы допустимых сбросов загрязняющих веществ не разрабатываются в связи с отсутствием сбросов в объекты централизованной системы водоотведения поселений и городских округов

Раздел V. Обоснование нормативов образования отходов производства и потребления и лимитов на их размещение

5.1. Обоснование нормативов образования отходов

Обоснование нормативов образования отходов проведено с учетом раздела II Методических указаний по разработке проектов нормативов образования отходов и лимитов на их размещение утвержденных Приказом Минприроды России от 07.12.2020г. №1021 «Об утверждении методических указаний по разработке проектов нормативов образования отходов и лимитов на их размещение», далее (МУ).

1.1 Лампы ртутные, ртутно-кварцевые, люминесцентные, утратившие потребительские свойства

(4 71 101 01 52 1)

Для обоснования норматива образования отхода согласно п. 8 МУ используются сведения о сроке службы ртутных ламп, в зависимости от их марки. Расчет норматива образования отхода произведен согласно Сборнику методик по расчёту объёмов образования отходов. С.-Пб, 2004.

Справочные данные предприятия представлены в Приложении 1 (книга 2, стр. 365,366).

Расчёт количества отходов образованных в результате замены ламп производится по формуле:

 $M = \sum ni \cdot mi \cdot ti \cdot 10^{-6} / ki, т/год$

где: ni – количество установленных ламп і-той марки, шт.;

ti – фактическое количество часов работы ламп i-той марки, час/год;

ki – эксплуатационный срок службы ламп i-той марки лампы, час;

mi – вес одной лампы, г.

Таблица 4.1.1 - Результаты расчета

Цех/участок	Марка	Кол-во уста- новленных ламп, шт.	Экс. срок службы, час	Вес одной лампы, г	Факт. кол-во часов работы, час/год	Норматив образования отхода, т/год
	L80W640 OSRAM	74	13000	224	8280	0,0106
	L36W640 OSRAM	120	13000	181	8280	0,0138
	ДРЛ- 400	164	15000	400	8280	0,0362
ЛПЦ	ДРЛ- 250	146	12000	400	8280	0,0403
	OSRAM HQL, 400Bt	129	24000	800	8280	0,0356
	Camelion LH20-FS-T2- M/827/E27	58	10000	154	8280	0,0074
	L18W640 OSRAM	174	13000	134	8280	0,0149
Варочный цех	L36W640 OSRAM	734	13000	181	8280	0,0846
	ДРЛ-250	206	12000	400	8280	0,0569
	L80W640 OSRAM	28	13000	224	8280	0,0040
Химкорпус	L36W640 OSRAM	129	13000	181	8280	0,0149
	ДРЛ-250	405	12000	400	8280	0,1118
ТЭС-2	ДРЛ-400	100	15000	400	8280	0,0221
100-2	ДРЛ-250	423	12000	400	8280	0,1167

ДРТМ Бумажная фабрика ТЭЦ-1	Саmelion H20-FS-T2- M/827/E27 ЛБ-40 L18W640 OSRAM ДРЛ 400 ДРЛ 250 ДНаТ400 ДРИ 250 ДРЛ-700 ДРЛ-250 ЛБ-40 L80W640 OSRAM ЛБ-80 ДРЛ-250	22 60 540 114 295 14 4 263 560 1460 79	10000 12000 13000 15000 12000 12000 10000 20000 12000	154 210 134 400 400 260 150 444	8280 8280 8280 8280 8280 8280 8280 8280	0,0028 0,0087 0,0461 0,0252 0,0814 0,0025
ЦРТМ — Д Д Д Д Бумажная фабрика — Д ТЭЦ-1	С18W640 OSRAM ДРЛ 400 ДРЛ 250 ДНаТ400 ДРИ 250 ДРЛ-700 ДРЛ-250 ЛБ-40 L80W640 OSRAM ЛБ-80	540 114 295 14 4 263 560 1460	13000 15000 12000 12000 10000 20000 12000	134 400 400 260 150	8280 8280 8280 8280 8280	0,0461 0,0252 0,0814 0,0025
ЦРТМ — Д — Д — Д — Д — Д — Д — Д — Д — Д —	OSRAM ДРЛ 400 ДРЛ 250 ДНаТ400 ДРИ 250 ДРЛ-700 ДРЛ-250 ЛБ-40 L80W640 OSRAM ЛБ-80	114 295 14 4 263 560 1460	15000 12000 12000 10000 20000 12000	400 400 260 150	8280 8280 8280 8280	0,0252 0,0814 0,0025
Бумажная фабрика ТЭЦ-1	ДРЛ 250 ДНаТ400 ДРИ 250 ДРЛ-700 ДРЛ-250 ЛБ-40 L80W640 OSRAM ЛБ-80	295 14 4 263 560 1460	12000 12000 10000 20000 12000	400 260 150	8280 8280 8280	0,0814 0,0025
Бумажная фабрика ТЭЦ-1	ДНаТ400 ДРИ 250 ДРЛ-700 ДРЛ-250 ЛБ-40 L80W640 OSRAM ЛБ-80	14 4 263 560 1460	12000 10000 20000 12000	260 150	8280 8280	0,0025
Бумажная фабрика ТЭЦ-1	ДРИ 250 ДРЛ-700 ДРЛ-250 ЛБ-40 L80W640 OSRAM ЛБ-80	4 263 560 1460	10000 20000 12000	150	8280	
Бумажная фабрика ТЭЦ-1	ДРЛ-700 ДРЛ-250 ЛБ-40 L80W640 OSRAM ЛБ-80	263 560 1460	20000 12000			$\alpha \alpha \alpha c$
фабрика ТЭЦ-1	ДРЛ-250 ЛБ-40 L80W640 OSRAM ЛБ-80	560 1460	12000	444		0,0005
тэц-1	ЛБ-40 L80W640 OSRAM ЛБ-80	1460		400	8280	0,0483
ТЭЦ-1	L80W640 OSRAM ЛБ-80			400	8280	0,1546
ТЭЦ-1	OSRAM ЛБ-80	79	12000	210	8280	0,2116
			13000	224	8280	0,0113
	ДРЛ-250	280	12000	450	8280	0,0869
	G 1:	75	12000	400	8280	0,0207
	Camelion H20-FS-T2- M/827/E27	90	10000	154	1992	0,0028
Į.	ДРЛ-500	105	5000	298	1992	0,0125
	ЛБ-80	62	12000	450	1992	0,0046
	L40W640 OSRAM	37	20000	178	1992	0,0007
ждц LH	Camelion H20-FS-T2- M/827/E27	22	10000	154	1992	0,0007
	ДРЛ-500	88	5000	298	1992	0,0104
Д	ĮРЛ -1000	72	18000	518	1992	0,0041
	L36W640 OSPAM	50	13000	181	8280	0,0058
	ДРЛ-250	31	12000	400	1992	0,0021
Д	ĮРВ - 500	147	5000	298	1992	0,0175
(L80W640 OSRAM	70	13000	224	1992	0,0024
ЦРО LH	Camelion H20-FS-T2- M/827/E27	42	10000	154	1992	0,0013
Į	ДРЛ-400	98	15000	400	1992	0,0052
КИПиА LH	Camelion H20-FS-T2- M/827/E27	241	10000	154	1992	0,0074
	L18W640 OSRAM	76	13000	134	1992	0,0016
цгп С	Camelion H20-FS-T2- M/827/E27	155	10000	154	1992	0,0048
	ДРЛ-250	227	12000	400	1992	0,0151
Столовая	ЛБ-40	35	12000	210	1992	0,0012
Медпункт LH	Camelion H20-FS-T2- M/827/E27	40	10000	154	1992	0,0012
L	L80W640 OSRAM	255	13000	224	1992	0,0088
I	L18W640 OSRAM	484	13000	134	1992	0,0099
C LH	Camelion H20-FS-T2- 1/827/E27	335	10000	154	1992	0,0103
	ДРЛ-500	141	5000	298	1992	0,0167

Цех/участок	Марка	Кол-во уста- новленных ламп, шт.	Экс. срок службы, час	Вес одной лампы, г	Факт. кол-во часов работы, час/год	Норматив об- разования от- хода, т/год
	Camelion LH20-FS-T2- M/827/E27	33	10000	154	1992	0,0010
	ДРЛ-1000	66	18000	518	1992	0,0038
СБО	ДРЛ-250	175	12000	400	1992	0,0116
	ЛБ-80	248	12000	450	1992	0,0185
	ЛБ-40	634	12000	210	1992	0,0221
	ДРИ-250	138	10000	150	1992	0,0041
	ДРВ-250	18	10000	239	1992	0,0009
Наружное освещение	ДРЛ-250	304	12000	400	3450	0,0350
	<u>- </u>	·	<u> </u>		Итого:	1,514

1.2 Отходы термометров ртутных (4 71 920 00 52 1)

Для обоснования норматива образования отхода согласно п. 8 МУ используется критерий, указывающий на утрату товара потребительских свойств — данные о списании ртутных термометров на предприятии. Справка предприятия о количестве списанных ртутных термометрах за последние 3 года представлена в Приложении 1 (книга 2, стр. 375).

Расчёт количества отходов, образованных в результате списания термометров производится по формуле:

Ho= Σ Hoi/T, т/год

где: Но –норматив образования отхода, т/год;

Ноі -количество образованного в і-том году отхода, т;

Т – количество лет в рассматриваемом периоде.

Исходные данные и расчет приведены в таблице 4.2.1

Таблица 4.2.1 - Результаты расчета

Цех		Количество, списанных термометров, шт.		Вес одной	Количе	Количество образов отходов, кг		Норматив образования
,	2018	2019	2020	ед., кг	2018	2019	2020	отхода, т/год
СПЛ	31	79	55	0,057	1,767	4,503	3,135	0,003

1.3 Аккумуляторы свинцовые отработанные неповрежденные, с электролитом (9 20 110 01 53 2)

Для обоснования норматива образования отхода согласно п. 8 МУ для аккумуляторов, установленных в ТЭЦ-1 и ТЭС-2 используются сведения о сроке службы изделий. Справочные данные предприятия представлены в Приложении 1 (книга 2, стр.420–460). Исходные данные и расчет приведены в таблице 4.3.1

Таблица 4.3.1 – Результаты расчета норматива образования отхода от ТЭЦ-1 и ТЭС-2.

Наимено- вание цеха	Марка аккуму- ляторных бата- рей	Количе- ство, шт.	Год уста- новки	Срок службы, лет	Плани- руемый год за- мены	Вес, кг	Норматив образования отхода, т/год
TOC 2	STARK 6 OpzS600	130	2017	25	2042	31	0,161
ТЭС-2	CK-12	130	1999	25	2024	53	0,276
	СК-16	114	1999	25	2024	68	0,310
ТЭЦ-1	CK-10	125	1999	25	2024	46	0,230
19ц-1	CK-12	124	1999	25	2024	53	0,263
						Итог	1,240

Для обоснования норматива образования отхода согласно п. 8 МУ для аккумуляторов, установленных на Ж/Д технике, также, используются сведения о сроке службы изделий. Справочные данные предприятия представлены в Приложении 1 (книга 2, стр.461–468). Исходные данные и расчет приведены в таблице 4.3.2.

Таблица 4.3.2 – Расчет норматива образования отхода в цехе ЖДЦ

Марка	Кол-во установ. аккум., шт.	Год установки	Срок экспл. аккумулятора	Вес аккумуля- тора, кг	Норматив образования отхода, т/год
Тепловоз ТЭМ2	1	2016	3 года	42	0,014
Тепловоз ТЭМ2	1	2017	3 года	42	0,014
Тепловоз ТЭМ2	1	2016	3 года	42	0,014
Мотовоз МПТ-6	2	2018	3 года	49,1	0,033
Снегоуборочный по- езд СМ-2Б	2	2018	3 года	49,1	0,033
Ж/д кран КЖ-561	2	2018	3 года	49,1	0,033
				Итого:	0.140

Для обоснования норматива образования отхода согласно п. 8 МУ для аккумуляторов, установленных на автотранспорте и спецтехнике используются сведения о сроке службы изделий. Расчет норматива образования отхода произведен согласно Методическим рекомендациям по оценке объемов образования отходов производства и потребления, Москва, 2003, ГУ НИЦПУРО. Справочные данные предприятия представлены в Приложении 1 (книга 2, стр.394–395).

Расчетная формула:

 $M_{a.6.9.} \!\! = K_{a.6.} \cdot K_u \cdot m_{a.6.9.} \! / \! H_{a.6.} \cdot 10^{\text{--}3}, \, {\scriptscriptstyle T/{\scriptstyle \Gamma}{\scriptstyle O}} \! {\scriptscriptstyle J}$

где: Ма.б.э. – масса отработанных свинцовых АКБ, т/год;

Ка.б. – количество АКБ, находящихся в эксплуатации, шт.;

Ки – коэффициент, учитывающий частичное испарение электролита в процессе работы АКБ;

та.б.э. – масса свинцовых АКБ, кг;

На.б. – средний срок службы АКБ, лет

Исходные данные и расчет приведены в таблице 4.3.3.

Таблица 4.3.3 - Результаты расчета норматива образования отхода цеха АТЦ

	,	ы расчета норматива ос	1	, , ,		стики аккуму	ляторов	Look www	Количе-	Норматив
№ п/п	Тип ТС	Марка ТС	Кол-во транс- порта, шт.	Годовой пробег, км/год	Кол-во, шт.	Вес, кг	Экспл.ср ок, лет	Коэф., учит. частичное ис- пар. электро- лита	ство отра- ботанных аккумуля- торов, шт.	порматив образова- ния отхода, т/год
1	Прочие легковые	УАЗ 309	1	2771	0	15,8	3	0,75	0	0,0000000
2	Прочие легковые	УАЗ 3303 фургон	1	12600	1	15,8	3	0,75	0,0632	0,0009986
3	Легковой	BA3-21114	1	15525	1	15,8	3	0,75	0,0632	0,0009986
4	Легковой	BA3-21114	1	0	0	15,8	3	0,75	0	0,0000000
5	Прочие легковые	УАЗ 31512	1	9472	1	15,8	3	0,75	0,0632	0,0009986
6	Легковой	УАЗ 3303 Фург.пер.8ч.	1	6760	1	15,8	3	0,75	0,0632	0,0009986
7	Легковой	УАЗ Патриот	1	2503	1	15,8	3	0,75	0,0632	0,0009986
8	Грузовой	УАЗ 390994	1	6801	1	15,8	3	0,75	0,0632	0,0009986
9	Грузовой	УАЗ 390994	1	2000	1	15,8	3	0,75	0,0632	0,0009986
10	Бортовой	ЗИЛ 431412	1	0	1	21,5	3	0,75	0,086	0,0018490
11	Бортовой	KAMA3 53205	1	11197	2	50,7	3	0,75	0,4056	0,0205639
12	Бортовой	ЗИЛ 431410	1	17404	1	21,5	3	0,75	0,086	0,0018490
13	Бортовой	ЗИЛ 431410	1	15443	1	21,5	3	0,75	0,086	0,0018490
14	Бортовой	ЗИЛ 431410	1	11209	0	21,5	3	0,75	0	0,0000000
15	Седельный тягач	KAMA3 5410	1	15431	2	50,7	3	0,75	0,4056	0,0205639
16	Самосвал	MA3 5551	1	0	2	50,7	3	0,75	0,4056	0,0205639
17	Самосвал	MA3 5551	1	16025	2	50,7	3	0,75	0,4056	0,0205639
18	Самосвал	MA3 5551	1	0	2	50,7	3	0,75	0,4056	0,0205639
19	Самосвал	KAMA3 55111	1	11302	2	50,7	3	0,75	0,4056	0,0205639
20	Самосвал	KAMA3 55111	1	0	2	50,7	3	0,75	0,4056	0,0205639
21	Самосвал	MA3 551605	1	28185	2	50,7	3	0,75	0,4056	0,0205639
22	Самосвал	MA3 551605	1	0	0	0	3	0,75	0	0,0000000
23	Фургон	ЗИЛ 47410С	1	0	0	0	3	0,75	0	0,0000000
24	Топливоцистерна	MA3 5337	1	0	0	0	3	0,75	0	0,0000000
25	Топливозаправщик	ЗИЛ 131	1	0	0	0	3	0,75	0	0,0000000
26	Автоцистерна пожар- ная	ЗИЛ 131 АЦ-40	1	0	0	0	3	0,75	0	0,0000000
27	Автоцистерна пожар- ная	АЦ-6.0-60(43118)461420	1	1580	0	0	3	0,75	0	0,0000000
28	Автобус	ПАЗ 32053-07	1	69790	1	50,7	3	0,75	0,2028	0,0102820
29	Автобус	Икарус 256.74	1	0	0	50,7	3	0,75	0	0,0000000
30	Автобус	Икарус 256.74	1	277	0	50,7	3	0,75	0	0,0000000
31	Автокран	KAMA3 53212 MKAT-16	1	0	0	50,7	3	0,75	0	0,0000000
32	Автокран	MA3 5337 КС-3577 г/п 14т	1	3574	0	50,7	3	0,75	0	0,0000000

					Характерис	стики аккумул	іяторов	Коэф., учит.	Количе-	Норматив
№ п/п	Тип ТС	Марка ТС	Кол-во транс- порта, шт.	Годовой пробег, км/год	Кол-во, шт.	Вес, кг	Экспл.ср ок, лет	частичное ис- пар. электро- лита	ство отра- ботанных аккумуля- торов, шт.	образова- ния отхода, т/год
33	Автокран	KC- 55721	1	3389	2	50,7	3	0,75	0,4056	0,0205639
34	Прочие автомобили со спецкузовами	КО 503 на шасси ГАЗ-53	1	0	0	50,7	3	0,75	0	0,0000000
35	Пр.специализир.	KAMA3 53422	1	7603	2	50,7	3	0,75	0,4056	0,0205639
36	Пр.специальный	MA3 630305	1	22981	2	50,7	3	0,75	0,4056	0,0205639
37	Пр.специализир.	ГАЗ 53-14-01	1	0	0	50,7	3	0,75	0	0,0000000
38	Мастерская	ЗИЛ 131	1	0	0	50,7	3	0,75	0	0,0000000
39	Лесовоз	MA3 5516A8-(336)	1	12944	2	50,7	3	0,75	0,4056	0,0205639
40	Прицеп	КЗАП 9370	1	0	0	50,7	3	0,75	0	0,0000000
41	Прицеп	КЗАП 9370	1		0	50,7	3	0,75	0	0,0000000
42	Прицеп	2-П-5	1		0	50,7	3	0,75	0	0,0000000
1	Бульдозер	Четра Т 11.02 КБ -1	1	0	2	50,7	3	0,75	0,4056	0,0205639
2	Бульдозер	Б-10.1111-1Е	1	0	2	18	3	0,75	0,144	0,0025920
3	Погрузчик	Амкодор 342 В	1	0	2	50,7	3	0,75	0,4056	0,0205639
4	Трактор колесный	T-40AM	1	0	2	30,5	1,5	0,75	0,122	0,0037210
5	Трактор колесный	MT3-82	1	0	2	32	3	0,75	0,256	0,0081920
6	Трактор колесный	MT3-82.1	1	0	2	32	3	0,75	0,256	0,0081920
7	Трактор колесный	MT3-82	1	0	2	32	3	0,75	0,256	0,0081920
8	Трактор колесный	MT3-82	1	0	2	32	3	0,75	0,256	0,0081920
9	Экскаватор	ЭО 2626	1	0	2	32	3	0,75	0,256	0,0000000
10	Погрузчик	TO 28	1	5536	2	50,7	3	0,75	0,4056	0,0205639
11	Экскаватор	ЭО 2625	1	0	2	32	3	0,75	0,256	0,0000000
12	Экскаватор	K406A1	1	20000	2	50,7	3	0,75	0,4056	0,0205639
13	Погрузчик гидравл.	L-34	1	20000	2	50,7	3	0,75	0,4056	0,0205639
14	Погрузчик гидравл.	L-34	1	20000	2	50,7	3	0,75	0,4056	0,0205639
15	Погрузчик фронтальный	Л-34	1	20000	2	50,7	3	0,75	0,4056	0,0205639
16	Прицеп тракторный	1ПТС - 2	1	0	0	0	0	0,75	0	0,0000000
17	Прицеп тракторный	ПСЕ – Ф-12,5Б	1	0	0	0	0	0,75	0	0,0000000
18	Прицеп тракторный	2 ПТС- 4 887Б	1	0	0	0	0	0,75	0	0,0000000
19	Экскаватор-погрузчик	VOLVO BL 71 B	1	20000	2	50,7	3	0,75	0,4056	0,0205639
									Итого	0,473

Для обоснования норматива образования отхода согласно п. 8 МУ используются сведения о сроке службы аккумуляторов различных марок и плановые сроки замены аккумуляторов. Норматив образования отхода составляет 0,473 т/год, расчет представлен в таблице 4.3.4.

Таблица 4.3.4 – Расчет норматива образования отхода

Цех	Наименование оборудования/	Год уста-	Срок службы,	План. год		l	одовое о	бразова	ние отхо	да, т/год	Į	
цех	техники	новки	лет	замены	2022	2023	2024	2025	2026	2027	2028	2029
ТЭС-	STARK 6 OpzS600	2017	25	2042								
2	CK-12	1999	25	2024			4,030					
	СК-16	1999	25	2024			6,890					
ТЭЦ-	СК-10	1999	25	2024			7,752					
1	CK-12	1999	25	2024			5,750					
	Тепловоз ТЭМ2	2016	3	2021/ 2025				0,042			0,042	
	Тепловоз ТЭМ2	2017	3	2021/ 2025				0,042			0,042	
	Тепловоз ТЭМ2	2016	3	2021/ 2025				0,042			0,042	
ЖДЦ	Мотовоз МПТ-6	2018	3	2022/ 2026	0,098				0,098			0,098
	Снегоуборочный поезд СМ-2Б	2018	3	2022/ 2026	0,098				0,098			0,098
	Ж/д кран КЖ-561	2018	3	2022/ 2026	0,098				0,098			0,098
АТЦ	Автотранспорт				0,473	0,473	0,473	0,473	0,473	0,473	0,473	0,473
	Итого:					0,473	24,895	0,599	0,768	0,473	0,599	0,768

1.4 Химические источники тока марганцово-цинковые щелочные неповрежденные отработанные

(9 20 110 01 53 2)

Для обоснования норматива образования отхода согласно п. 8 МУ используется критерий, указывающий на утрату товара потребительских свойств — данные о списании элементов питания на предприятии. Справка предприятия о количестве списанных элементов питания за последние 3 года представлена в Приложении 1 (книга 2, стр.375).

Расчёт количества отходов, образованных в результате списания элементов питания производится по формуле:

Ho= Σ Hoi/T, т/год

где: Но –норматив образования отхода, т/год;

Ноі –количество образованного в і-том году отхода, т;

Т – количество лет в рассматриваемом периоде.

Исходные данные и расчет приведены в таблице 4.4.1

Таблица 4.4.1 - Результаты расчета

Наименова-		тво списан ов питания		Вес одной ванных отходо				Норматив об- разования от-
ние	2018	2019	2020	ед., кг	2018	2019	2020	хода, т/год
Элем.пит. АА	174	146	5	0,024	4,176	3,504	0,12	0,0026
Элем.пит. LR03 AAA	469	295	146	0,006	2,814	1,77	0,876	0,0018
Элем.пит. (Ба- тарейка)	24	195	48	0,03	0,72	5,85	1,44	0,0027
• /			•	•		•	Итого:	0,007

1.5 Шпалы железнодорожные деревянные, пропитанные антисептическими средствами, отработанные (8 41 000 01 51 3)

Для обоснования норматива образования отхода согласно п. 8 МУ используется критерий, указывающий на утрату товара потребительских свойств. Отход образуется в цехе ЖДЦ, в

результате проведения ремонтных работ железнодорожного полотна. Обоснование норматива образования отхода производится согласно данным акта осмотра технического состояния подъездного железнодорожного пути, представленного в Приложении 1 (книга 2, стр. 469–478).

Среднее количество шпал (за 2019-2021г), подлежащих замене в год – 755 штук.

Количество шпал, подлежащих замене в 2021, 2022 году принято согласно данным акта осмотра технического состояния подъездного железнодорожного пути, в 2023-2026 году – 755 штук.

Годовое образование отхода рассчитано по формуле:

$$M = N \cdot m \cdot 10^{-3}$$
, т/год

где: N – количество шпал, подлежащих замене, шт.

m – средняя масса одной шпалы, согласно данным предприятия составляет 80 кг (Приложение 1, книга 2, стр. 461).

Норматив образоания отхода составляет 4 т/год, результаты расчета представлены таблице 4.5.1.

Таблица 4.5.1 – Результаты расчета норматива образования отхода

, ,								
			Год	образов	ания отх	одов		
	2022	2023	2024	2025	2026	2027	2028	2029
Количество шпал, подлежащих за-	50	755	755	755	755	755	755	755
мене, шт.	30	755	133	133	755	133	733	133
Годовое образование отхода, т/год	4,000	60,427	60,427	60,427	60,427	60,427	60,427	60,427

1.6 Шлам очистки емкостей и трубопроводов от нефти и нефтепродуктов (9 11 200 02 39 3) Обоснование: Норматив образования отхода рассчитан согласно МРО 7-99 Методика расчета объемов образования отходов. Нефтешлам, образующийся при зачистке резервуаров для хранения нефтепродуктов, СПб, 2004 г. Удельный норматив образования нефтешлама на одну тонну хранящегося топлива, кг/т:

для резервуаров с бензином k = 0.04 кг на 1 т бензина;

для резервуаров с дизельным топливом k = 0.9 кг на 1 т дизельного топлива.

Отход образуется при зачистке резервуаров на АЗС.

Справочные данные предприятия представлены в Приложении 1 (книга 2, стр. 479).

Расчет норматива образования отхода произведен по формуле:

$$M = V \cdot k \cdot 10^{-3}$$
, т/год

где: V – годовой объём топлива, хранившегося в резервуаре, т/год;

k – удельный норматив образования нефтешлама на 1 т хранящегося топлива, кг/т.

Результаты расчета норматива образования отхода представлены в таблице 4.6.1.

Таблица 4.6.1- Результаты расчета

Топливо	Кол-во резервуаров	Объем резервуара, м ³	Годовой расход топлива, т/год	Норматив образова- ния отхода, т/год
Дизельное топливо	2	18,5	1191,38	1,072
Бензин	2	18,5	33,19	0,001
			Итого:	1,074

1.7 Золосажевые отложения при очистке оборудования ТЭС, ТЭЦ, котельных умеренно опасные

(6 18 902 01 20 3)

Отход образуется в ТЭЦ-1 в результате работы паровых котлов №8-10 и водогрейных котлов №3,4. Для обоснования норматива образования отхода, согласно п. 7 МУ используется количество сжигаемого топлива. Расчет произведен в соответствии с Методическими рекомендациями по разработке проекта нормативов предельного размещения отходов для теплоэлектростанций, теплоцентралей, промышленных и отопительных котельных. Санкт-Петербург 1998 г.

Справочные данные предприятия представлены в Приложении 1 (книга 2, стр. 367).

Шлам представляет смесь мазутной золы и продуктов химической обработки накипи. Количество мазутной золы, отлагающейся на поверхностях нагрева котлов при сжигании мазута, периодически вымываемой водой, определяется по формуле:

$$M_3 = 10^{-6} \cdot G_{V2O5} \cdot B \cdot \eta_3$$
, т/год

где: Gv205 - содержание пентаоксида ванадия в мазуте, 200 г/т;

В - расход мазута, сжигаемого на ТЭЦ-1 (паровые котлы №8-10 и водогрейные котлы №3,4), составляет 35820 т/год;

ηз - коэффициент оседания пентаоксида ванадия на поверхностях нагрева, равный 0,05.

$$M_3 = 10^{-6} \cdot 200 \cdot 35820 \cdot 0.05 = 0.358 \text{ T/год}$$

Количество сажи, отлагающейся на поверхностях нагрева при сжигании мазута, определяется по формуле: $Mc=0.01 \cdot B \cdot q \cdot 0.02 \cdot Q_T/32680$,

где: q- потери с механическим недожогом, равны 0,02%;

От- теплотворная способность мазута, равна 40421 кДж⋅кг

0.02 - коэффициент оседания сажи на поверхностях нагрева.

$$Mc=0.01 \cdot 35820 \cdot 0.02 \cdot 0.02 \cdot 40421/32680 = 0.177 \text{ T/год}$$

Норматив образования золосажевых отложений, определяется по формуле:

 $Motx = M3 + Mc, \tau/год$

Motx=0.358+0.177=0.535 т/год

1.8 Отходы минеральных масел моторных (4 06 110 01 31 3)

Обоснование норматива образования отхода приведено в соответствии с данными Сборника удельных показателей образования отходов производства и потребления (утв. Госкомэкологией РФ 07.03.1999), согласно которому ориентировочный норматив сбора отработанных моторных масел в % от исходного количества используемых моторных масел составляет 26%.

Справочные данные предприятия приведены в Приложении 1 (книга 2, стр. 367, 368).

Расчет норматива образования отхода произведен по формуле:

Mмас.мот.отр. = Mмас.мот · Hмас.мот.отр.

где: Ммас.мот.отр. – масса отходов минеральных масел моторных, т/год;

Ммас.мот - годовой расход масла, т;

Нмас.мот.отр. – норматив сбора отработанных моторных масел от исходного количества используемых моторных масел, 26%.

Результаты расчета представлены в таблице 4.8.1.

Таблица 4.8.1- Результаты расчета

Цех	Годовой расход масла, т	Норматив сбора, %	Норматив образования от- хода, т/год
Варочный цех	0,185	26	0,048
T9C-2	0,183	26	0,048
ЦРТМ	0,06	26	0,016
ТЭЦ-1	0,362	26	0,094
АТЦ	2,371	26	0,616
ждц	3,211	26	0,835
Складское хоз-во	2,068	26	0,538
		Итого	2,194

1.9 Отходы минеральных масел индустриальных (4 06 130 01 31 3)

Обоснование норматива образования отхода приведено в соответствии с данными Сборника удельных показателей образования отходов производства и потребления (утв. Госкомэкологией РФ 07.03.1999), согласно которому ориентировочный норматив сбора отработанных индустриальных масел в % от исходного количества используемых индустриальных масел составляет 50 %.

Справочные данные предприятия приведены в Приложении 1 (книга 2, стр. 367, 368).

Расчет норматива образования отхода произведен по формуле:

Ммас.инд.отр. = Ммас.инд. · Нмас.инд.отр.

где: Ммтро – масса отходов минеральных масел индустриальных, т/год;

Ммас.инд. - годовой расход масла, т;

Нмас.инд.отр. – норматив сбора отработанных моторных масел от исходного количества используемых моторных масел, 50%.

Результаты расчета представлены в таблице 4.9.1.

Таблица 4.9.1- Результаты расчета

Цех	Годовой расход масла, т	Норматив сбора, %	Норматив образования отхода, т/год
ЛПЦ	9,194	50	4,597
Варочный цех	1,700	50	0,850
Химкорпус	5,439	50	2,720
ТЭС-2	1,166	50	0,583
ЦРТМ	17,180	50	8,590
Бумажная фабрика	27,661	50	13,831
ТЭЦ-1	0,422	50	0,211
СБО	0,375	50	0,188
АТЦ	1,630	50	0,815
ждц	0,193	50	0,097
РМЦ	1,464	50	0,732
РСУ	0,005	50	0,003
ЦРО	0,900	50	0,450
		Итого	: 33,665

1.10 Отходы минеральных масел трансмиссионных (4 06 150 01 31 3)

Обоснование норматива образования отхода приведено в соответствии с распоряжением Минтранса РФ от 14 марта 2008 г. №АМ-23-р, устанавливающем базовые нормы расхода топлива

и горюче-смазочных материалов на автомобильном транспорте составляет: для бензина -0.3 л на 100 л расхода топлива; для дизельного топлива -0.4 л на 100 л расхода топлива.

Справочные данные предприятия представлены в Приложении 1 (книга 2, стр. 367, 368).

Расчет норматива образования отхода произведен по формуле:

Ммас.транс.отр. = Ммас.инд. · Нмас.инд.отр.

где: Ммас.транс.отр. – масса отходов минеральных масел трансмиссионных, т/год;

Ммас.транс. - годовой расход масла, т;

Нмас.инд.отр. – норма сбора отработанных трансмиссионных масел;

Плотность отработанного масла составляет 0.9 т/м^3 .

Таблица 4.10.1- Результаты расчета

Цех	Топливо	Годовой расход топлива, л/год	Норма расхода масла, л/100л	Образовано от- ходов масла, м ³ /год	Средняя плот- ность масел, т/м ³	Норматив образо- вания отхода, т/год
ATH	Бензин	38591,25	0,3	0,115774	0,9	0,104
АТЦ	ДТ	1588509,8	0,4	6,354039	0,9	5,719
	•	•			Итого:	5,823

1.11 Отходы минеральных масел трансформаторных, не содержащих галогены (4 06 140 01 31 3)

Обоснование норматива образования отхода приведено в соответствии с данными Сборника удельных показателей образования отходов производства и потребления (утв. Госкомэкологией РФ 07.03.1999), согласно которому ориентировочный норматив сбора отработанных трансформаторных масел в % от исходного количества используемых трансформаторных масел составляет 60%. Справочные данные предприятия представлены в Приложении 1 (книга 2, стр. 367, 368).

Расчетная формула:

Ммас.трансф.отр. = Ммас.трансф. Нмас.трансф.отр.

где: Ммас.трансф.отр. – масса отходов минеральных масел трансформаторных, т/год;

Ммас.трансф. - годовой расход масла, т;

Нмас.трансф.отр. – норматив сбора отработанных трансформаторных масел от исходного количества используемых трансформаторных масел, 60%.

Таблица 4.11.1- Результаты расчета

Цех	Годовой расход масла, т	Норма образования отхода,%	Норматив образования отхода, т/год	
ЛПЦ	0,354	60	0,212	
Химкорпус	0,37	60	0,222	
TЭC-2	0,296	60	0,178	
ТЭЦ-1	0,36	60	0,216	
		Итого:	0,828	

1.12 Отходы минеральных масел турбинных (4 06 170 01 31 3)

Обоснование норматива образования отхода приведено в соответствии с данными Сборника удельных показателей образования отходов производства и потребления (утв. Госкомэкологией РФ 07.03.1999), согласно которому ориентировочный норматив сбора отработанных турбинных масел в % от исходного количества используемых турбинных масел составляет 60%. Справочные данные предприятия представлены в Приложении 1 (книга 2, стр. 367, 368).

Расчетная формула:

Ммас.турб. отр. = Ммас.турб. · Нмас.турб. отр.

где: Ммас.турб. отр. – масса отходов минеральных масел турбинных, т/год;

Ммас.турб. - годовой расход масла, т;

Нмас.турб. отр. – норматив сбора отработанных турбинных масел от исходного количества используемых турбинных масел, 60%.

Таблица 4.12.1- Результаты расчета

Цех	Годовой расход масла, т	Норма образования отхода,%	Норматив образования отхода, т/год	
ТЭС-2	6,497	60	3,898	
Бумфабрика	3,619	60	2,171	
ТЭЦ-1	2,79	60	1,674	
СБО	2,272	60	1,363	
		Итого:	9,107	

1.13 Отходы минеральных масел гидравлических, не содержащих галогены (4 06 120 01 31 3) Обоснование норматива образования отхода приведено в соответствии с данными Сборника удельных показателей образования отходов производства и потребления (утв. Госкомэкологией РФ 07.03.1999), согласно которому ориентировочный норматив сбора отработанных гидравлических масел в % от исходного количества используемых гидравлических масел составляет 60%. Справочные данные предприятия представлены в Приложении 1 (книга 2, стр. 367, 368).

Расчетная формула:

Ммас.гидрл. отр. = Ммас.гидрл. · Нмас.гидрл. отр.

Где: Ммас.гидрл. отр. – масса отходов минеральных масел гидравлических, т/год;

Ммас.гидрл. - годовой расход масла, т;

Нмас.гидрл. отр. – норматив сбора отработанных турбинных масел от исходного количества используемых турбинных масел, 60%.

Таблица 4.13.1- Результаты расчета

Цех	Годовой расход масла, т	Норма образования отхода,%	Норматив образования отхода, т/год
ЛПЦ	1,122	60	0,673
Варочный цех	0,2	60	0,120
Химкорпус	0,414	60	0,248
Бумажная фабрика	15,035	60	9,021
СБО	0,24	60	0,144
АТЦ	3,408	60	2,045
Складское хоз-во	2,753	60	1,652
		Итого:	13,903

1.14 Фильтры очистки масла автотранспортных средств отработанные (9 21 302 01 52 3) Для обоснования норматива образования отхода согласно данным п. 8 МУ используется критерий, указывающий на утрату товара (фильтров очистки масла) потребительских свойств, за расчетную единицу продукции (работ) для отходов обслуживания транспортных средств (замена отработанных масляных фильтров автотранспортных средств) принята единица расстояния (километр) (согласно п.7 МУ).

Фильтры очистки масла образуются в результате замены отработанных масляных фильтров во время ремонта автотранспорта и спецтехники в АТЦ.

Расчет норматива образования отхода произведен согласно Методическим рекомендациям по оценке объемов образования отходов производства и потребления, Москва, 2003, ГУ НИЦПУРО; Справочные данные предприятия представлены в Приложении 1 (книга 2, стр. 394–397).

Норматив образования отходов рассчитан по формуле:

 $Motx = n\phi \cdot m\phi \cdot K\pi p \cdot Li / HiL \cdot 10^{-3}, \tau/год$

где: піф – количество фильтров і-й марки, установленных на автомобиле;

тіф – масса фильтра, кг;

Кпр – коэффициент, учитывающий наличие механических примесей, равный 1,5;

Li - годовой пробег транспортной единицы (тыс.км.) или наработка механизма (моточас), с двигателем i – той модели;

HiL - нормативный пробег (тыс. км) или наработка (моточас).

Результаты расчета норматива образования отхода представлены в таблице 4.14.1.

Таблица 4.14.1- Результаты расчета

	лица 4.14.1- 1 сзультат		TC		Характер	истики фильтр	-		
№ п/	№ п/ Тип ТС	Марка ТС	Количество единиц транс- порта, шт.	Годовой про- бег, км/год	Нормативный пробег, км/год/(м/ч)	Количество, шт.	Вес фильтра, кг	К пр	Норматив образования отхода, т/год
1	Прочие легковые	УАЗ 309	1	2771	12000	1	0,28	1,5	0,0001
2	Прочие легковые	УАЗ 3303 фургон	1	12600	12000	1	0,28	1,5	0,0004
3	Легковой	BA3-21114	1	15525	12000	1	0,28	1,5	0,0005
4	Легковой	BA3-21114	1	0	12000	1	0,28	1,5	0,0000
5	Прочие легковые	УАЗ 31512	1	9472	12000	1	0,28	1,5	0,0003
6	Легковой	УАЗ 3303 Фург.пер.8ч.	1	6760	12000	1	0,28	1,5	0,0002
	Легковой	УАЗ Патриот	1	2503	12000	1	0,28	1,5	0,0001
8	Грузовой	УАЗ 390994	1	6801	12000	1	0,39	1,5	0,0003
9	Грузовой	УАЗ 390994	1	2000	12000	1	0,39	1,5	0,0001
	Бортовой	ЗИЛ 431412	1	0	12000	1	0,39	1,5	0,0000
	Бортовой	KAMA3 53205	1	11197	12000	1	0,39	1,5	0,0005
12	Бортовой	ЗИЛ 431410	1	17404	12000	1	0,39	1,5	0,0008
	Бортовой	ЗИЛ 431410	1	15443	12000	1	0,39	1,5	0,0008
	Бортовой	ЗИЛ 431410	1	11209	12000	1	0,39	1,5	0,0005
	Седельный тягач	KAMA3 5410	1	15431	12000	1	0,39	1,5	0,0008
	Самосвал	MA3 5551	1	0	12000	1	0,39	1,5	0,0000
	Самосвал	MA3 5551	1	16025	12000	1	0,39	1,5	0,0008
18	Самосвал	MA3 5551	1	0	12000	1	0,39	1,5	0,0000
19	Самосвал	KAMA3 55111	1	11302	12000	1	0,39	1,5	0,0006
	Самосвал	KAMA3 55111	1	0	12000	1	0,39	1,5	0,0000
	Самосвал	MA3 551605	1	28185	12000	1	0,39	1,5	0,0014
22	Самосвал	MA3 551605	1	0	12000	1	0,39	1,5	0,0000
	Фургон	ЗИЛ 47410С	1	0	12000	1	0,39	1,5	0,0000
	Гопливоцистерна	MA3 5337	1	0	12000	1	0,39	1,5	0,0000
	Гопливозаправщик	ЗИЛ 131	1	0	12000	1	0,39	1,5	0,0000
	Автоцистерна пожарная	ЗИЛ 131 АЦ-40	1	0	12000	1	0,39	1,5	0,0000
	Автоцистерна пожарная	АЦ-6.0-60(43118)461420	1	1580	12000	1	0,39	1,5	0,0001
28	Автобус	ПАЗ 32053-07	1	69790	12000	1	0,39	1,5	0,0034
	Автобус	Икарус 256.74	1	0	12000	1	0,39	1,5	0,0000
	Автобус	Икарус 256.74	1	277	12000	1	0,39	1,5	0,00001
	Автокран	KAMA3 53212 MKAT-16	1	0	12000	1	0,39	1,5	0,0000
	Автокран	МАЗ 5337 КС-3577 г/п 14т	1	3574	12000	1	0,39	1,5	0,0002
33	Автокран	KC- 55721	1	3389	12000	1	0,39	1,5	0,0002
	Пр.авт. со спецкузовами	КО 503 на шасси ГАЗ-53	1	0	12000	1	0,39	1,5	0,0000
	Пр.специализир.	KAMA3 53422	1	7603	12000	1	0,39	1,5	0,0004

№ п/ Тип ТС			Количество		Характеристики фильтров				Цопистир об
		Марка ТС	единиц транс- порта, шт.	Годовой про- бег, км/год	Нормативный пробег, км/год/(м/ч)	Количество, шт.	Вес фильтра, кг	К пр	Норматив образования отхода, т/год
36	Пр.специальный	MA3 630305	1	22981	12000	1	0,39	1,5	0,0011
37	Пр.специализир.	ГАЗ 53-14-01	1	0	12000	1	0,34	1,5	0,0000
38	Мастерская	ЗИЛ 131	1	0	12000	1	0,39	1,5	0,0000
39	Песовоз	MA3 5516A8-(336)	1	12944	12000	1	0,39	1,5	0,0006
40	Прицеп	КЗАП 9370	1	0	12000	0	0	0	0,0000
41		КЗАП 9370	1	0	12000	0	0	0	0,0000
42		2-П-5	1	0	12000	0	0	0	0,0000
1	Бульдозер	Четра Т 11.02 КБ -1	1	0	1500	1	0,39	1,5	0,0000
2	Бульдозер	Б-10.1111-1Е	1	0	1500	1	0,39	1,5	0,0000
3	Погрузчик	Амкодор 342 В	1	0	1500	1	0,39	1,5	0,0000
	Грактор колесный	T-40AM	1	0	1500	1	0,39	1,5	0,0000
5	Грактор колесный	MT3-82	1	0	1500	1	0,39	1,5	0,0000
6	Грактор колесный	MT3-82.1	1	0	1500	1	0,39	1,5	0,0000
7	Грактор колесный	MT3-82	1	0	1500	1	0,39	1,5	0,0000
8	Грактор колесный	MT3-82	1	0	1500	1	0,39	1,5	0,0000
9	Экскаватор	ЭО 2626	1	0	1500	1	0,39	1,5	0,0000
10	Погрузчик	TO 28	1	5536	1500	1	0,39	1,5	0,0022
	Экскаватор	ЭО 2625	1	0	1500	0	0,39	1,5	0,0000
12	Экскаватор	K406A1	1	20000	1500	1	0,39	1,5	0,0078
13	Погрузчик гидравл.	L-34	1	20000	1500	1	0,39	1,5	0,0078
14	Погрузчик гидравл.	L-34	1	20000	1500	1	0,39	1,5	0,0078
	Погрузчик фронтальный	Л-34	1	20000	1500	1	0,39	1,5	0,0078
	Прицеп тракторный	1ПТС - 2	1	0	0	0	0	0	0,0000
17	Прицеп тракторный	ПСЕ – Ф-12,5Б	1	0	0	0	0	0	0,0000
	Прицеп тракторный	2 ПТС- 4 887Б	1	0	0	0	0	0	0,0000
	Экскаватор-погрузчик	VO BL 71 B	1	20000	1500	1	0,39	1,5	0,0078
	-	-	_	-				Итог	0,055

1.15 Сальниковая набивка асбесто-графитовая промасленная (содержание масла 15 % и более)

(9 19 202 01 60 3)

Для обоснования норматива образования отхода согласно п. 8 МУ используется показатели, характеризующие образование отхода – данные предприятия о расходе сальниковой набивки на проведение работ по ее замене за последние 3 года. Согласно п.7 МУ за расчетную единицу продукции (работ) принято количество ремонтных работ. Справочные данные предприятия о расходе сальниковой набивки представлены в Приложении 1, книга 2, стр. 377. Графики проведения ремонтных работ 2018-2020г. приведены в Приложении 1, книга 2, стр.534-541.

Расчетная формула:

Но= Σ Hoi/T, т/год

где: Но – предлагаемый норматив образования отхода, т/год;

Ноі – удельное количество образованного в і-том году отхода, т;

Т – количество лет в рассматриваемом периоде.

Результаты расчета образования отхода на 1 ремонт представлены в таблице 4.15.1.

Таблица 4.15.1- Результаты расчета образования отхода на один ремонт

Цех	Расход материалов т/год			Количество ремонтов, шт.			Образование отхода, кг/ремонт			Среднее значение,
	2018	2019	2020	2018	2019	2020	2018	2019	2020	кг/ремонт
ЛПЦ			0,284				0,000	0,000	0,940	0,188
Варочный цех	0,055	0,1952	0,0183				0,377	0,646	0,061	0,607
Химкорпус	0,2872		0,1547				1,967	0,000	0,512	0,826
ТЭС-2		0,035					0,000	0,116	0,000	0,039
ЦРТМ	0,017	0,008	0,015	146	302	302	0,116	0,026	0,050	0,064
Бумажная фабрика	0,0855	0,0124	0,0889	140	302	302	0,586	0,041	0,294	0,307
ТЭЦ-1	0,06						0,411	0,000	0,000	0,137
ЦГП	0,03	0,0028	0,0325				0,205	0,009	0,108	0,107
ждц	0,02						0,137	0,000	0,000	0,046
СБО	0,1166	0,1223	0,0829				0,799	0,405	0,275	0,493

Расчет годового образования отхода произведен в соответствии со средним образованием отхода за один ремонт определенным в таблице 4.15.1 и графиком ремонта основного оборудования на 2021 год (Приложении 1, книга 2, стр. 533).

Расчет годового образования отхода по подразделениям представлено в таблице 4.15.2.

Таблица 4.15.2 – Результаты расчета норматива образования отход

	Образова-	Колич	ество ремонт	ов, шт.	в, шт. Норматив образования отхода, т/год				
Цех	ние от- хода, кг/ремонт	c 18.01.2022	2022-2028	по 17.01.2029	c 18.01.2022	2022-2028	по 17.01.2029		
ЛПЦ	0,188				0,045	0,047	0,0023		
Варочный цех	0,607				0,145	0,152	0,0073		
Химкорпус	0,826		251		0,197	0,207	0,0099		
ТЭС-2	0,039				0,009	0,010	0,0005		
ЦРТМ	0,064				0,015	0,016	0,0008		
Бумажная фабрика	0,307	239		12	0,073	0,077	0,0037		
ТЭЦ-1	0,137				0,033	0,034	0,0016		
ЦГП	0,107				0,026	0,027	0,0013		
ЖДЦ	0,046				0,011	0,011	0,0006		
СБО	0,493				0,118	0,124	0,0059		
Итого: 0,673 0,706 0,034									

1.16 Фильтры очистки топлива автотранспортных средств отработанные (9 21 303 01 52 3)

Для обоснования норматива образования отхода согласно данным п. 8 МУ используется критерий, указывающий на утрату товара (фильтров очистки топлива) потребительских свойств, за расчетную единицу продукции (работ) для отходов обслуживания транспортных средств (замена отработанных топливных фильтров автотранспортных средств) принята единица расстояния (километр) (согласно п.7 МУ).

Фильтры образуются в результате замены отработанных топливных фильтров автотранспорта и спецтехники в цехе АТЦ.

Расчет норматива образования отхода произведен согласно Методическим рекомендациям по оценке объемов образования отходов производства и потребления, Москва, 2003, ГУ НИЦПУРО; Справочные данные предприятия представлены в Приложении 1 (книга 2, стр. 394–397).

Норматив образования отходов рассчитан по формуле:

 $Motx = n\phi \cdot m\phi \cdot Li / HiL \cdot 10^{-3}, \tau/год$

где: піф – количество фильтров і-й марки, установленных на автомобиле;

тіф – масса фильтра і-й марки, кг;

Li - годовой пробег транспортной единицы (тыс.км.) или наработка механизма (моточас), с двигателем i – той модели;

HiL - норма пробега (тыс. км) или наработки (моточас) до замены фильтра;

HiL - нормативный пробег (тыс. км) или наработка (моточас).

Результаты расчета норматива образования отхода представлены в таблице 4.16.1.

Таблица 4.16.1- Результаты расчета

					Xapa	ктеристики фильтр	10B	Пописатир обра
№ п/г	Тип ТС	Марка 1С	Соличество едини транспорта, шт.	Годовой пробег, км/год	Нормативный пробег, км/год/(м/ч)	Кол-во фильтров, шт.	Вес фильтра, кг	Норматив образования отхода, т/год
1	Прочие легковые	УАЗ 309	1	2771	12000	1	0,35	0,0001
2	Прочие легковые	УАЗ 3303 фургон	1	12600	12000	1	0,35	0,0004
3	Легковой	BA3-21114	1	15525	12000	1	0,35	0,0005
4	Легковой	BA3-21114	1	0	12000	1	0,35	0,0000
5	Прочие легковые	УАЗ 31512	1	9472	12000	1	0,35	0,0003
6	Легковой	УАЗ 3303Фург.пер.8ч.	1	6760	12000	1	0,35	0,0002
7	Легковой	УАЗ Патриот	1	2503	12000	1	0,35	0,0001
8	Грузовой	УАЗ 390994	1	6801	12000	1	0,74	0,0004
9	Грузовой	УАЗ 390994	1	2000	12000	1	0,74	0,0001
10	Бортовой	ЗИЛ 431412	1	0	12000	1	0,74	0,0000
11	Бортовой	KAMA3 53205	1	11197	12000	1	0,74	0,0007
12	Бортовой	ЗИЛ 431410	1	17404	12000	1	0,74	0,0011
13	Бортовой	ЗИЛ 431410	1	15443	12000	1	0,74	0,0010
14	Бортовой	ЗИЛ 431410	1	11209	12000	1	0,74	0,0007
15	Седельный тягач	KAMA3 5410	1	15431	12000	1	0,74	0,0010
16	Самосвал	MA3 5551	1	0	12000	1	0,74	0,0000
17	Самосвал	MA3 5551	1	16025	12000	1	0,74	0,0010
18	Самосвал	MA3 5551	1	0	12000	1	0,74	0,0000
19	Самосвал	KAMA3 55111	1	11302	12000	1	0,74	0,0007
20	Самосвал	KAMA3 55111	1	0	12000	1	0,74	0,0000
21	Самосвал	MA3 551605	1	28185	12000	1	0,74	0,0017
22	Самосвал	MA3 551605	1	0	12000	1	0,74	0,0000
23	Фургон	ЗИЛ 47410С	1	0	12000	1	0,74	0,0000
24	Топливоцистерна	MA3 5337	1	0	12000	1	0,74	0,0000
25	Топливозаправщик	ЗИЛ 131	1	0	12000	1	0,74	0,0000
26	Автоцистерна пожарная	ЗИЛ 131 АЦ-40	1	0	12000	1	0,74	0,0000
27	Автоцистерна пожарная	АЦ-6.0-60(43118)461420	1	1580	12000	1	0,74	0,0001
28	Автобус	ПАЗ 32053-07	1	69790	12000	1	0,74	0,0043
29	Автобус	Икарус 256.74	1	0	12000	1	0,74	0,0000
30	Автобус	Икарус 256.74	1	277	12000	1	0,74	0,0000
31	Автокран	KAMA3 53212 MKAT 16T	1	0	12000	1	0,74	0,0000
32	Автокран	MA3 5337 КС-3577 г/п 14т	1	3574	12000	1	0,74	0,0002
33	Автокран	KC- 55721	1	3389	12000	1	0,74	0,0002
34	Пр.автомоб. со спецкуз.	КО 503 на шасси ГАЗ-53	1	0	12000	1	0,74	0,0000
35	Пр.специализир.	KAMA3 53422	1	7603	12000	1	0,74	0,0005

					Xapa	ктеристики фильтр	0В	Пошенения обще
№ п/п	Тип ТС	Марка ТС	оличество едини транспорта, шт.	Годовой пробег, км/год	Нормативный пробег, км/год/(м/ч)	Кол-во фильтров, шт.	Вес фильтра, кг	Норматив образования отхода, т/год
36	Пр.специальный	MA3 630305	1	22981	12000	1	0,74	0,0014
37	Пр.специализир.	ГАЗ 53-14-01	1	0	12000	1	0,75	0,0000
38	Мастерская	ЗИЛ 131	1	0	12000	1	0,74	0,0000
39	Лесовоз	MA3 5516A8-(336)	1	12944	12000	1	0,74	0,0008
40	Прицеп	КЗАП 9370	1	0	0	0	0	0,0000
41	Прицеп	КЗАП 9370	1	0	0	0	0	0,0000
42	Прицеп	2-П-5	1	0	0	0	0	0,0000
1	Бульдозер	Четра Т 11.02 КБ -1	1	0	1500	1	0,74	0,0000
2	Бульдозер	Б-10.1111-1Е	1	0	1500	1	0,74	0,0000
3	Погрузчик	Амкодор 342 В	1	0	1500	1	0,74	0,0000
4	Трактор колесный	T-40AM	1	0	1500	1	0,74	0,0000
5	Трактор колесный	MT3-82	1	0	1500	1	0,74	0,0000
6	Трактор колесный	MT3-82.1	1	0	1500	1	0,74	0,0000
7	Трактор колесный	MT3-82	1	0	1500	1	0,74	0,0000
8	Трактор колесный	MT3-82	1	0	1500	1	0,74	0,0000
9	Экскаватор	ЭО 2626	1	0	1500	1	0,74	0,0000
10	Погрузчик	TO 28	1	5536	1500	1	0,74	0,0027
11	Экскаватор	ЭО 2625	1	0	1500	1	0,74	0,0000
12	Экскаватор	K406A1	1	20000	1500	1	0,74	0,0099
13	Погрузчик гидрав.	L-34	1	20000	1500	1	0,74	0,0099
14	Погрузчик гидрав.	L-34	1	20000	1500	1	0,74	0,0099
15	Погрузчик фронтальный	Л-34	1	20000	1500	1	0,74	0,0099
16	Прицеп тракторный	1ПТС - 2	1	0	0	0	0	0,0000
17	Прицеп тракторный	ПСЕ – Ф-12,5Б	1	0	0	0	0	0,0000
18	Прицеп тракторный	2 ПТС- 4 887Б	1	0	0	0	0	0,0000
19	Экскаватор-погрузчик	VOLVO BL 71 B	1	20000	1500	1	0,74	0,0099
							Итог	0,069

1.17 Опилки и стружка древесные, загрязненные нефтью или нефтепродуктами (содержание нефти или нефтепродуктов 15% и более) (9 19 205 01 39 3)

Для обоснования норматива образования отхода согласно п. 8 МУ используется показатели, характеризующие образование отхода — данные предприятия о среднегодовом расходе древесных опилок и стружки для ликвидации проливов нефтепродуктов (Приложении 1, книга 2, стр. 369).

Расчет норматива образования отхода произведен согласно Методическим рекомендациям по расчету нормативов образования отходов для автотранспортных предприятий. Санкт-Петербург, 2003 г.

Расчет норматива образования отхода произведен по формуле:

 $Mo = m / (1-k), \tau/год$

где: Мо – количество опилок и стружки древесных, загрязненных нефтью или нефтепродуктами, т/год;

т – фактический расход опилок и стружки древесных, т/год;

k - коэффициент промасленности, % (по паспортным данным).

Таблица 4.17.1- Результаты расчета

Цех	Годовой расход опилок и стружки, кг/год	Коэффициент промасленности	Норматив образования отхода, т/год
ЛПЦ	35,1	0,164	0,042
Варочный цех	6,5	0,164	0,008
Химкорпус	20,4	0,164	0,024
T9C-2	30,2	0,164	0,036
ЦРТМ	55,2	0,164	0,066
Бумажная фабрика	160,4	0,164	0,192
ТЭЦ-1	14,1	0,164	0,017
СБО	10,9	0,164	0,013
АТЦ	59,6	0,164	0,071
ЖДЦ	6,0	0,164	0,007
РМЦ	4,7	0,164	0,006
РСУ	0,02	0,164	0,000
ЦРО	2,9	0,164	0,003
ЦГП	14,0	0,164	0,017
		Итого:	0,502

1.18 Всплывшие нефтепродукты из нефтеловушек и аналогичных сооружений (4 06 350 01 31 3)

Отход образуется в цехе ТЭЦ-1 при работе комплексной системы очистки (ОП-БМО) «Байкал».

Для обоснования норматива образования отхода согласно п. 8 МУ используются показатели, характеризующие образование отхода – протокол испытаний №45/21-ПСВ от 15.06.2021 года (Т.5, Т.6), (Приложении 1, книга 2, стр. 486-487).

Норматив образования отхода определен в соответствии с Методическими рекомендациями по оценке объемов образования отходов производства и потребления, Москва, 2003, ГУ НИЦПУРО:

Qп.неф. = Wi · (Свх - Свых) / (
$$100 -$$
Рнеф) · 10^4 , т/год

где: Оп.неф. – количество обводненных нефтепродуктов, т/год;

Wi- количество стоков в нефтеуловителе, т/год;

Свх – концентрация нефтепродуктов в стоках, поступающих в уловитель, мг/л;

Свых – концентрация нефтепродуктов на выпуске из уловителя, мг/л;

Рнеф – процент обводненности нефтепродуктов, %.

Результаты расчета представлены в таблице 4.18.1

Таблица 4.18.1 – Результаты расчета

Количество стоков	Концентрация неф	гепродуктов, мг/л	Обводненность	Норматив образова-	
поступающих на очистку т/год	до очистки	после очистки	нефтепродуктов, %	• •	
75445,5	5,27	0,3	30,1	0,536	

1.19 Фильтры очистки масла компрессорных установок отработанные (содержание нефтепродуктов 15% и более) (9 18 302 81 52 3)

Отход образуется от работы компрессорных установок в цехах XBO и CБO. На XBO установлено 5 компрессоров, каждый год один из компрессоров останавливается на капитальный ремонт, во время которого происходит замена фильтра. На CБO установлен 1 компрессор, замена масленого фильтра осуществляется каждые 4000 часов работы (2 раза в год).

Для обоснования норматива образования отхода согласно п. 8 МУ используются показатели, характеризующие образование отхода – график проведения ремонтов (периодичность замены фильтров) (Приложении 1 книга 2, стр. 488,489).

Расчет норматива образования отхода произведен в соответствии с Методическими рекомендациями по оценке объемов образования отходов производства и потребления, Москва, 2003, ГУ НИЦПУРО:

 $M\phi$. = $N\phi \cdot m\phi \cdot K\pi p$

где: Мф – годовое образование отходов фильтров, т/год;

тф – масса фильтра, т;

Кпр – коэффициент, учитывающий наличие механических примесей и остатков масел в отработанном фильтре 1,5.

Расчет образования отхода представлен в таблице 4.19.1

Таблица 4.19.1 – Результаты расчета

Цех	Количество ком- прессоров, шт.	Вес одного фильтра, кг	Коэффициент учи- тывающий наличие примесей	Количество кап. ре- монтов в год	Норматив образования отхода, т/год
XBO	5	27,4	1,5	1	0,0413
СБО	1	0,3	1,5	2	0,0009
				Итого:	0,042

1.20 Фильтры очистки масла двигателей железнодорожного подвижного состава отработанные (9 22 221 05 52 3)

Для обоснования норматива образования отхода согласно данным п. 8 МУ используется критерий, указывающий на утрату товара потребительских свойств — замена отработанных масляных фильтров при проведении технического обслуживания ж/д транспорта в цехе ЖДЦ.

Расчет норматива образования отхода произведен в соответствии с Методическими рекомендациями по оценке объемов образования отходов производства и потребления, Москва, 2003, ГУ НИЦПУРО.

Справочные данные предприятия представлены в Приложении 1 (книга 2, стр. 375).

Расчетная формула:

 $M\phi$. = $N\phi \cdot m\phi \cdot K\pi p$

где: Мф – годовое образование отходов фильтров, т/год;

Nф – количество установленных фильтров, шт.;

тф – масса фильтра, т;

Кпр – коэффициент, учитывающий наличие механических примесей и остатков масел в отработанном фильтре 1,5.

Расчет норматива образования отхода представлен в таблице 4.20.1

Таблица 4.20.1 – Результаты расчета

Марка	Количество уста- новленных филь- тров, шт.	Вес фильтра, кг	Коэф. учит. наличие примесей	Норматив образования отхода, т/год
Тепловоз ТЭМ2 №1491	2	46	1,5	0,138
Тепловоз ТЭМ2 № 3299	2	46	1,5	0,138
Тепловоз ТЭМ2 № 7209	2	46	1,5	0,138
Мотовоз МПТ-6	2	46	1,5	0,138
Снегоуборочный поезд СМ-2Б	2	46	1,5	0,138
Ж/д кран ЕДК-300-2	2	46	1,5	0,138
Ж/д кран КЖ-561	2	46	1,5	0,138
			Итого:	0,966

1.21 Фильтры очистки топлива двигателей железнодорожного подвижного состава отработанные

(9 22 221 07 52 3)

Для обоснования норматива образования отхода согласно данным п. 8 МУ используется критерий, указывающий на утрату товара потребительских свойств — замена отработанных топливных фильтров при проведении технического обслуживания ж/д транспорта в цехе ЖДЦ.

Расчет норматива образования отхода произведен в соответствии с Методическими рекомендациями по оценке объемов образования отходов производства и потребления, Москва, 2003, ГУ НИЦПУРО.

Справочные данные предприятия представлены в Приложении 1 (книга 2, стр. 375).

Расчетная формула:

 $\mathsf{M} \varphi . = \mathsf{N} \varphi \cdot \mathsf{m} \varphi \cdot \mathsf{K} \mathsf{\Pi} \mathsf{p}$

где: Мф – годовое образование отходов фильтров, т/год;

Nф – количество установленных фильтров, шт.;

тф – масса фильтра, т;

Кпр – коэффициент, учитывающий наличие механических примесей и остатков нефтепродуктов в отработанном фильтре 1,5.

Расчет образования отхода представлен в таблице 4.21.1

Таблица 4.21.1 – Результаты расчета

Марка	Количество установленных фильтров, шт.	Вес фильтра, кг	Коэф. учит. наличие приме- сей	Норматив образо- вания отхода, т/год
Тепловоз ТЭМ2 №1491	2	0,19	1,5	0,00057
Тепловоз ТЭМ2 № 3299	2	0,19	1,5	0,00057
Тепловоз ТЭМ2 № 7209	2	0,19	1,5	0,00057
Мотовоз МПТ-6	2	0,19	1,5	0,00057
Снегоуборочный поезд СМ-2Б	2	0,19	1,5	0,00057
Ж/д кран ЕДК-300-2	2	0,19	1,5	0,00057
Ж/д кран КЖ-561	2	0,19	1,5	0,00057
	•	•	Итого:	0,004

1.22 Сетки сушильные и формующие полиэфирные бумагоделательных машин, утратившие потребительские свойства (3 06 121 91 51 4)

Для обоснования норматива образования отхода согласно п. 8 МУ используются сведения о сроке службы материалов и изделий (нормативы расхода технологических материалов). Копия нормативов расхода технологических материалов представлена в Приложении 1 (книга 2, стр. 368, 407). В таблице 4.22.1 представлены результаты расчета.

Таблица 4.22.1- Результаты расчета

Пох	Нормативный расход	Нормативный	Вес одной	Кол-во замененных	Норматив образо-
Цех	сеток, шт.	расход, дней	сетки, кг	сеток, шт./год	вания отхода, т/год
	2	360	20	2	0,040
	1	70	20	5	0,103
	3	80	20	14	0,270
	2	65	20	11	0,222
	1	280	20	1	0,026
	1	270	20	1	0,027
Г	3	300	20	4	0,072
Бумажная	22	360	20	22	0,440
фабрика	1	360	20	1	0,020
	2	30	20	24	0,480
	1	280	20	1	0,026
	1	270	20	1	0,027
	2	180	20	4	0,080
	4	300	20	5	0,096
	2	100	20	7	0,144
				Итого:	2,071

1.23 Фильтры воздушные автотранспортных средств отработанные (9 18 905 11 52 4)

Для обоснования норматива образования отхода согласно данным п. 8 МУ используется критерий, указывающий на утрату товара (фильтров очистки воздуха) потребительских свойств, за расчетную единицу продукции (работ) для отходов обслуживания транспортных средств (замена отработанных воздушных фильтров автотранспортных средств) принята единица расстояния (километр) (согласно п.7 МУ).

Отход образуется в цехе АТЦ.

Расчет норматива образования отхода произведен в соответствии с Методическими рекомендациями по оценке объемов образования отходов производства и потребления, Москва, 2003, ГУ НИЦПУРО;

Справочные данные предприятия представлены в Приложении 1, (книга 2, стр. 394–397).

Норматив образования отходов рассчитан по формуле:

 $Motx = n\phi \cdot m\phi \cdot Li / HiL \cdot 10^{-3}$, т/год

где: піф – количество фильтров і-й марки, установленных на автомобиле;

тіф – масса фильтра і-й марки, кг;

Li - годовой пробег транспортной единицы (тыс.км.) или наработка механизма (моточас), с двигателем i – той модели;

HiL - норма пробега (тыс. км) или наработки (моточас) до замены фильтра;

HiL - нормативный пробег (тыс. км) или наработка (моточас).

Расчет норматива образования отхода представлен в таблице 4.23.1.

Таблица 4.23.1- Результаты расчета

	тца 4.23.1- 1 сзультаты ра				Характ	еристики фильтр	ОВ	
№ п/г	Тип ТС	Марка ТС	Кол-во ед. транс- порта, шт.	км/год	Нормативный пробег, км/год/(м/ч)	Кол-во, шт.	Вес, кг	Норматив обра- зования отходов, т/год
1	Прочие легковые	УАЗ 309	1	2771	12000	1	0,5	0,0001
2	Прочие легковые	УАЗ 3303 фургон	1	12600	12000	1	0,5	0,0005
3	Легковой	BA3-21114	1	15525	12000	1	0,5	0,0006
4	Легковой	BA3-21114	1	0	12000	1	0,5	0,0000
5	Прочие легковые	УАЗ 31512	1	9472	12000	1	0,5	0,0004
6	Легковой	УАЗ 3303Фург.пер.8ч.	1	6760	12000	1	0,5	0,0003
7	Легковой	УАЗ Патриот	1	2503	12000	1	0,5	0,0001
8	Грузовой	УАЗ 390994	1	6801	12000	1	1	0,0006
9	Грузовой	УАЗ 390994	1	2000	12000	1	1	0,0002
10	Бортовой	ЗИЛ 431412	1	0	12000	1	1	0,0000
11	Бортовой	KAMA3 53205	1	11197	12000	1	3	0,0028
12	Бортовой	ЗИЛ 431410	1	17404	12000	1	3	0,0044
13	Бортовой	ЗИЛ 431410	1	15443	12000	1	3	0,0039
14	Бортовой	ЗИЛ 431410	1	11209	12000	1	3	0,0028
15	Седельный тягач	KAMA3 5410	1	15431	12000	1	1	0,0013
16	Самосвал	MA3 5551	1	0	12000	1	3	0,0000
17	Самосвал	MA3 5551	1	16025	12000	1	3	0,0040
18	Самосвал	MA3 5551	1	0	12000	1	3	0,0000
19	Самосвал	KAMA3 55111	1	11302	12000	1	3	0,0028
20	Самосвал	KAMA3 55111	1	0	12000	1	3	0,0000
21	Самосвал	MA3 551605	1	28185	12000	1	1	0,0023
22	Самосвал	MA3 551605	1	0	12000	1	1	0,0000
23	Фургон	ЗИЛ 47410С	1	0	12000	1	1	0,0000
24	Топливоцистерна	MA3 5337	1	0	12000	1	1	0,0000
25	Топливозаправщик	ЗИЛ 131	1	0	12000	1	3	0,0000
26	Автоцистерна пожарная	ЗИЛ 131 АЦ-40	1	0	12000	1	3	0,0000
27	Автоцистерна пожарная	АЦ-6.0-60(43118)461420	1	1580	12000	1	3	0,0004
28	Автобус	ПАЗ 32053-07	1	69790	12000	1	3	0,0174
29	Автобус	Икарус 256.74	1	0	12000	1	3	0,0000
30	Автобус	Икарус 256.74	1	277	12000	1	3	0,0001
31	Автокран	КАМАЗ 53212 МКАТ г/п 16т	1	0	12000	1	3	0,0000
32	Автокран	МАЗ 5337 КС-3577 г/п 14т	1	3574	12000	1	3	0,0009
33	Автокран	KC- 55721	1	3389	12000	1	3	0,0008
34	Пр. автомобили со спецку- зовами	КО 503 на шасси ГАЗ-53	1	0	12000	1	1	0,0000
35	Пр.специализир.	KAMA3 53422	1	7603	12000	1	3	0,0019

					Характ	еристики фильтр	00B	H
№ п/п	Тип ТС	Марка ТС	Кол-во ед. транс- порта, шт.	Годовой пробег, км/год	Нормативный пробег, км/год/(м/ч)	Кол-во, шт.	Вес, кг	Норматив обра- зования отходов, т/год
36	Пр.специальный	MA3 630305	1	22981	12000	1	1	0,0019
37	Пр.специализир.	ГАЗ 53-14-01	1	0	12000	1	1	0,0000
38	Мастерская	ЗИЛ 131	1	0	12000	1	1	0,0000
39	Лесовоз	MA3 5516A8-(336)	1	12944	12000	1	1	0,0011
40	Прицеп	КЗАП 9370	1	0	0	0	0	0,0000
41	Прицеп	КЗАП 9370	1	0	0	0	0	0,0000
42	Прицеп	2-П-5	1	0	0	0	0	0,0000
1	Бульдозер	Четра Т 11.02 КБ -1	1	0	1500	1	1	0,0000
2	Бульдозер	Б-10.1111-1Е	1	0	1500	1	1	0,0000
3	Погрузчик	Амкодор 342 В	1	0	1500	1	1	0,0000
4	Трактор колесный	T-40AM	1	0	1500	1	1	0,0000
5	Трактор колесный	MT3-82	1	0	1500	1	1	0,0000
6	Трактор колесный	MT3-82.1	1	0	1500	1	1	0,0000
7	Трактор колесный	MT3-82	1	0	1500	1	1	0,0000
8	Трактор колесный	MT3-82	1	0	1500	1	1	0,0000
9	Экскаватор	ЭО 2626	1	0	1500	1	1	0,0000
10	Погрузчик	TO 28	1	5536	1500	1	1	0,0037
11	Экскаватор	ЭО 2625	1	0	1500	1	1	0,0000
12	Экскаватор	K406A1	1	20000	1500	1	1	0,0133
13	Погрузчик гидравлический	L-34	1	20000	1500	1	1	0,0133
14	Погрузчик гидравлический	L-34	1	20000	1500	1	1	0,0133
15	Погрузчик фронтальный	Л-34	1	20000	1500	1	1	0,0133
16	Прицеп тракторный	1ПТС - 2	1	0	0	0	0	0,0000
17	Прицеп тракторный	ПСЕ – Ф-12,5Б	1	0	0	0	0	0,0000
18	Прицеп тракторный	2 ПТС- 4 887Б	1	0	0	0	0	0,0000
19	Экскаватор-погрузчик	VOLVO BL 71 B	1	20000	1500	1	1	0,0133
							Ито	0,122

1.24 Фильтры воздушные двигателей железнодорожного подвижного состава отработанные (9 22 221 02 52 4)

Для обоснования норматива образования отхода согласно данным п. 8 МУ используется критерий, указывающий на утрату товара потребительских свойств — замена отработанных масляных фильтров при проведении технического обслуживания ж/д транспорта в цехе ЖДЦ.

Расчет норматива образования отхода произведен в соответствии с Методическими рекомендациями по оценке объемов образования отходов производства и потребления, Москва, 2003, ГУ НИЦПУРО.

Справочные данные предприятия представлены в Приложении 1 (книга 2, стр. 375).

Расчетная формула:

 $M\phi$. = $N\phi \cdot m\phi \cdot K\pi p$

где: Мф – годовое образование отходов фильтров, т/год;

Nф – количество установленных фильтров, шт.;

тф – масса фильтра, т;

Кпр – коэффициент, учитывающий наличие механических примесей и остатков масел в отработанном фильтре 1,5.

Расчет норматива образования отхода представлен в таблице 4.24.1

Таблица 4.24.1 – Результаты расчета

Марка	Количество установленных фильтров	Вес фильтра, кг	Коэф. учит. наличие примесей	Норматив образования отхода, т/год
Тепловоз ТЭМ2 №1491	2	5	1,5	0,015
Тепловоз ТЭМ2 № 3299	2	5	1,5	0,015
Тепловоз ТЭМ2 № 7209	2	5	1,5	0,015
Мотовоз МПТ-6	2	5	1,5	0,015
Снегоуборочный поезд СМ-2Б	2	5	1,5	0,015
Ж/д кран ЕДК-300-2	2	5	1,5	0,015
Ж/д кран КЖ-561	2	5	1,5	0,015
			Итого:	0,105

1.25 Фильтры воздушные компрессорных установок в полимерном корпусе отработанные (9 18 302 66 52 4)

Отход образуется в СБО от работы компрессорной установки Atlas Copco LT 10-15.

Для обоснования норматива образования отхода согласно п. 8 МУ используются показатели, характеризующие образование отхода – график проведения ремонтов (периодичность замены фильтров) (Приложении 1, книга 2, стр. 488,489).

Расчет норматива образования отхода произведен в соответствии с Методическими рекомендациями по оценке объемов образования отходов производства и потребления, Москва, 2003, ГУ НИЦПУРО:

 $M\phi$. = $N\phi \cdot m\phi \cdot K\pi p$

где: Мф – годовое образование отходов фильтров, т/год;

тф – масса фильтра, т;

Кпр – коэффициент, учитывающий наличие механических примесей и остатков масел в отработанном фильтре 1,5.

Расчет образования отхода представлен в таблице 4.25.1

Таблица 4.25.1 – Результаты расчета

Цех	Количество компрессоров, шт.	Вес одного фильтра, кг	Коэф.учит. наличие при- месей	Периодичность замены	Количество кап.ремонтов в год	Норматив об- разования от- хода, т/год
СБО	1	0,3	1,5	каждые 4000 ча- сов работы	2	0,001

1.26 Обувь кожаная рабочая, утратившая потребительские свойства (4 03 101 00 52 4)

Для обоснования норматива образования отхода согласно данным п. 7 МУ за расчетную единицу принята единица человек — количество сотрудников, которых предприятие обеспечивает спецобувью. Справочные данные предприятия представлены в Приложении 1 (книга 2, стр. 388-389). Расчет норматива образования отхода произведен согласно Методическим рекомендациям по оценке объемов образования отходов производства и потребления, Москва, 2003, ГУ НИЦПУРО:

Mсоб = mсоб · N · Kизн · Kзагр · 10^{-3}

где: Мсоб – масса вышедшей из употребления спецобуви, т/год;

тесоб – масса одной пары спецобуви в исходном состоянии, кг;

Кизн – коэффициент, учитывающий потери массы спецобуви данного вида в процессе эксплуатации, равен 0,85;

К загр – коэффициент, учитывающий загрязненность спецобуви данного вида, равен 1,03;

N – количество пар обуви, вышедшей из употребления, шт./год, определяется по формуле:

 $N = P\phi/T_H$

где: Рф – количество пар изделий спецобуви данного вида, находящихся в носке, шт.;

Тн - нормативный срок носки спецобуви данного вида, лет.

Таблица 4.26.1- Результаты расчета

Цех	Вид обуви	Норма выдачи на чело- века	Количе- ство в носке, шт.	Норматив- ный срок носки, мес.	Масса новой спецобуви, кг	Норматив образова- ния отхода, т/год
	Ботинки РАНГ S1 чер. ЗП	1	8	12	1,12	0,0078
ппп	Ботинки ТОФФ ТРУД МП чер	1	216	12	1,12	0,2118
ЛПП	Ботинки ТРЕЙЛ ФРИЗ (Р) ут чер.	1	216	18	0,46	0,0580
Варочный цех	Ботинки ТОФФ ТРУД МП чер	1	49	12	1,12	0,0480
	Ботинки ТРЕЙЛ ФРИЗ (Р) ут чер.	1	49	18	0,46	0,0132
V	Ботинки ТОФФ ТРУД МП чер	1	97	12	1,12	0,0951
Химкор- пус	Ботинки ТРЕЙЛ ФРИЗ (Р) ут чер.	1	97	18	0,46	0,0260
	Ботинки РАНГ S1 чер. ЗП	1	1	12	1,12	0,0010
IIDTN (Ботинки ТОФФ ТРУД МП чер	1	57	12	1,12	0,0559
ЦРТМ	Ботинки ТРЕЙЛ ФРИЗ (Р) ут чер.	1	57	18	0,46	0,0153
	Ботинки ТОФФ ТРУД МП чер	1	83	12	1,12	0,0814
ТЭС-2	Ботинки ТРЕЙЛ ФРИЗ (Р) ут чер	1	83	18	0,46	0,0223
	Ботинки РАНГ S1 чер. ЗП	1	21	12	1,12	0,0206

Цех	Вид обуви	Норма выдачи на чело- века	Количе- ство в носке, шт.	Норматив- ный срок носки, мес.	Масса новой спецобуви, кг	Норматив образова- ния отхода, т/год
	Ботинки РАНГ S1 чер. ЗП	1	6	12	1,12	0,0059
Бумажная	Ботинки ТОФФ ТРУД МП чер	1	247	12	1,12	0,2422
фабрика	Ботинки ТРЕЙЛ ФРИЗ (Р) ут чер.	1	247	18	0,46	0,0663
	Ботинки РАНГ S1 чер. ЗП	1	5	12	1,12	0,0049
	Ботинки РАНГ S1 чер. ЗП	1	1	12	1,12	0,0010
ТЭЦ-1	Ботинки ТОФФ ТРУД МП чер	1	194	12	1,12	0,1902
	Ботинки ТРЕЙЛ ФРИЗ (Р) ут чер.	1	194	18	0,46	0,0521
	Ботинки ТОФФ ТРУД МП чер	1	31	12	1,12	0,0304
XBO	Ботинки ТРЕЙЛ ФРИЗ (Р) ут чер.	1	31	18	0,46	0,0083
	Ботинки РАНГ S1 чер. 3П	1	1	12	1,12	0,0010
АТЦ	Ботинки ТОФФ ТРУД МП чер	1	53	12	1,12	0,0520
АПЦ	Ботинки ТРЕЙЛ ФРИЗ (Р) ут чер.	1	53	18	0,46	0,0142
	Ботинки РАНГ S1 чер. ЗП	1	1	12	1,12	0,0010
	Ботинки РАНГ S1 чер. 3П	1	4	12	1,12	0,0039
ждц	Ботинки ТОФФ ТРУД МП чер	1	58	12	1,12	0,0569
	Ботинки ТРЕЙЛ ФРИЗ (Р) ут чер.	1	58	18	0,46	0,0156
ГСМ и	Ботинки ТОФФ ТРУД МП чер	1	14	12	1,12	0,0137
АЗС, маз. хоз-во;	Ботинки ТРЕЙЛ ФРИЗ (Р) ут чер.	1	14	18	0,46	0,0038
-	Ботинки ТОФФ ТРУД МП чер	1	27	12	1,12	0,0265
РМЦ	Ботинки ТРЕЙЛ ФРИЗ (Р) ут чер.	1	27	18	0,46	0,0072
	Ботинки РАНГ S1 чер. ЗП	1	4	12	1,12	0,0039
	Ботинки РАНГ S1 чер. ЗП	1	4	12	1,12	0,0039
РСУ	Ботинки ТОФФ ТРУД МП чер	1	15	12	1,12	0,0147
	Ботинки ТРЕЙЛ ФРИЗ (Р) ут чер.	1	15	18	0,46	0,0040
	Ботинки ТОФФ ТРУД МП чер	1	40	12	1,12	0,0392
ЦРО	Ботинки ТРЕЙЛ ФРИЗ (Р) ут чер.	1	40	18	0,46	0,0107
	Ботинки РАНГ S1 чер. ЗП	1	23	12	1,12	0,0226
I/I/III A	Ботинки ТОФФ ТРУД МП чер	1	35	12	1,12	0,0343
КИПиА	Ботинки ТРЕЙЛ ФРИЗ (Р) ут чер.	1	35	18	0,46	0,0094
	Ботинки РАНГ S1 чер. ЗП	1	2	12	1,12	0,0020
	Ботинки РАНГ S1 чер. ЗП	1	40	12	1,12	0,0392
ЦГП	Ботинки ТОФФ ТРУД МП чер	1	93	12	1,12	0,0912
	Ботинки ТРЕЙЛ ФРИЗ (Р) ут чер.	1	93	18	0,46	0,0250
	Ботинки РАНГ S1 чер. ЗП	1	6	12	1,12	0,0059
	Ботинки РАНГ S1 чер. ЗП	1	38	12	1,12	0,0373
СКК	Ботинки ТОФФ ТРУД МП чер	1	48	12	1,12	0,0471
	Ботинки ТРЕЙЛ ФРИЗ (Р) ут чер.	1	48	18	0,46	0,0129
	Ботинки РАНГ S1 чер. ЗП	1	3	12	1,12	0,0029
СПЛ	Ботинки ТОФФ ТРУД МП чер	1	10	12	1,12	0,0098
<u></u>	Ботинки ТРЕЙЛ ФРИЗ (Р) ут чер.	1	10	18	0,46	0,0027
	Ботинки РАНГ S1 чер. ЗП	1	32	12	1,12	0,0314
	Ботинки РАНГ S1 чер. ЗП	1	166	12	1,12	0,1628
Заводоупр	Ботинки ТОФФ ТРУД МП чер	1	4	12	1,12	0,0039
	Ботинки ТРЕЙЛ ФРИЗ (Р) ут чер.	1	4	18	0,46	0,0011
СБО	Ботинки РАНГ S1 чер. ЗП	1	3	12	1,12	0,0029
CDO	Ботинки РАНГ S1 чер. ЗП	1	18	12	1,12	0,0177

Цех	Вид обуви	Норма выдачи на чело- века	Количе- ство в носке, шт.	Норматив- ный срок носки, мес.	Масса новой спецобуви, кг	Норматив образова- ния отхода, т/год
	Ботинки ТОФФ ТРУД МП чер	1	62	12	1,12	0,0608
	Ботинки ТРЕЙЛ ФРИЗ (Р) ут	1	62	18	0,46	0,0166
	чер.					į
					Итого:	2,194

- 1.27 Щепа натуральной чистой древесины (3 05 220 03 21 5);
- 1.28 Опилки натуральной чистой древесины (3 05 230 01 43 5);
- 1.29Прочие несортированные древесные отходы из натуральной чистой древесины(3 05 291 91 20 5);
- 1.30 Отходы коры (3 05 100 01 21 4);
- 1.31 Кора с примесью земли (3 05 100 02 29 4)

Согласно п.9 МУ нормативы образования отходов обоснованы расчетным путем с применением расчета по материально-сырьевому балансу.

Материально-сырьевой баланс разработан с учетом специфики предприятия, представлен в Приложении 9 (книга 2, стр. 789-805). Справочные данные предприятия представлены в Приложении 1 (книга 2, стр. 365, 414-415). В таблице 4.31.1 представлены исходные данные для расчетов.

Таблица 4.31.1 – Исходные данные для расчета

Наименование сырья	Ед. изм.	2021
Древесное сырье на варку целлюлозы в пересчете на балансы окоренные 1-3 сорта	тыс. пл. м ³	1623,300
Целлюлоза по варке	тыс. тонн	343,200
Из них:		
Баланс	тыс. пл. м ³	1214,900
Привозная щепа	тыс. пл. м ³	408,400
Покупное топливное сырье	тыс. пл. м ³	467,000

Нормы образования древесных отходов при производстве технологической щепы, согласно приказу, об утверждении нормативов (Приложение 1, книга 2, стр. 413).

Содержание коры при окорке баланса 8%. (4-10% от объема срубленной древесины, согласно Сборнику удельных показателей образования отходов производства и потребления, Москва, 1999 г)

Количество отходов, образующихся при окорке и распиловке составляет 1,9% (1,2—4,8% от объема окариваемого сырья, согласно Сборнику удельных показателей образования отходов производства и потребления, Москва, 1999 г)

Количество отходов, образующихся при рубке и сортировании составляет 3% (3–12% от объема окариваемого сырья, согласно Сборнику удельных показателей образования отходов производства и потребления, Москва, 1999 г)

Количество отходов, образованных при сортировании щепы составляет 4% (3–12% от объема окариваемого сырья, согласно Сборнику удельных показателей образования отходов производства и потребления, Москва, 1999 г)

Доставка Ж/Д транспортом коротья:

Количество древесины в одном вагоне: 55 тыс. пл. м³

Количество отходов общивки вагонов -0.5 т с 1 вагона

Количество проволоки – 0,11 т с 1 вагона

Количество металлических включений - 0,003 т с 1 вагона

Доставка Ж/Д транспортом длинника:

Количество древесины в одном вагоне: 60 тыс. пл. м³

Количество отходов обшивки вагонов – 0,15 т с 1 вагона

Количество отходов коры с примесью земли -0.25 т с 1 вагона

Количество металлических включений - 0,001 т с 1 вагона

Результаты расчета представлены в таблице 4.31.2.

Таблица 4.31.2 – Расчет образования отходов

	Ед. изм.	2021
Количество неокоренного древесного сырья, поступающего на распиловку и окорку	тыс. пл. м ³	1255,421
Количество коры при окорке баланса	тыс. пл. м ³	100,434
Количество окоренной древесины	тыс. пл. м ³	1054,553
Количество отходов ,образующихся при окорке (древесина в укоре) и распиловке	тыс. пл. м ³	21,945
Количество сырья поступившего на рубку и распиловку	тыс. пл. м ³	1133,042
Количество отходов, образующихся при рубке и сортировании	тыс. пл. м ³	33,991
Количество отходов, образованных при сортировании щепы	тыс. пл. м ³	15,530
Итого отходов от сортировки привозной щепы и собственной щепы)	тыс. пл. м ³	49,522
Из них:		
От отходов сортирования привозной щепы 40% составляет мелкая фракция	тыс. пл. м ³	6,212
Остальное опилки	тыс. пл. м ³	43,310
Итого:		
Отходы коры и древесины в укоре	тыс. пл. м ³	122,378
Отходы щепы	тыс. пл. м ³	6,212
Отходы опилок	тыс. пл. м ³	43,310
Общий расход баланса	тыс. пл. м ³	1699,391
Из них:		
Длинник (94%)	тыс. пл. м ³	1597,427
Коротье (6%)	тыс. пл. м ³	101,963
Привозная щепа	тыс. пл. м ³	388,260
Поступление коротья:		
Ж/д транспортом поступает 33% сырья	тыс. пл. м ³	33,65
Количество вагонов с коротьем	шт.	612
Количество отходов обшивки вагонов	тонн	305,890
Количество проволоки	тонн	67,296
Отходы металла	тонн	1,835
Поступление длинника:		
Количество вагонов с коротьем	шт.	8786
Количество отходов обшивки вагонов	тонн	1317,877
Отходы металла	тонн	8,786
Общее количество вагонов с сырьем в год	шт.	9398
Объем отходов коры с примесью земли от всех вагонов	\mathbf{M}^3	2349,408
Количество отходов коры с примесью земли от всех вагонов	тонн	1762,056
$r_{\text{confident}}$ repend to become a supply of the property		

Коэффициент перевода весовых единиц в объемные – 909 кг/м³

Таблица 4.31.3 – Расчет норматива образования отходов

Наименование отхода	Норматив образования отхода т/год			
Отходы коры	117012,460			
Щепа натуральной чистой древесины	5939,770			
Опилки натуральной чистой древесины*	41410,601			
Прочие несортированные древесные отходы из натуральной чистой	1707,998			
древесины	·			
Лом и отходы, содержащие незагрязненные черные металлы в виде изделий, кусков, несортированные	11,172			
Лом и отходы стальные несортированные	70,787			
Кора с примесью земли	1853,459			

^{*}Суммарный норматив образования отхода Опилки натуральной чистой древесины определен с учетом образования отхода от цеха РСУ (п. 4.68-4.70).

1.32 Древесные отходы от сноса и разборки зданий (8 12 101 01 72 4)

Для обоснования норматива образования отхода согласно п. 8 МУ используются показатели, характеризующие образование отхода – ведомости объемов работ по сносу зданий и сооружений, представленные в Приложении 1 (книга 2, стр. 542-546). Норматив образования отхода рассчитан по количеству выполненных работ (услуг), норма образования отхода принята 100% в соответствии Правилами разработки и применения нормативов трудноустранимых потерь и отходов материалов в строительстве РДС-82-202-96. Результаты расчета представлены в таблице 4.32.1.

Таблица 4.32.1- Результаты расчета

	Норма	Норматив образования отхода, т/год						
Объект	образования отхода, %	2022	2023	2024-2028	по 17.01.2029			
Здание трансформаторной станции ТП №4	100	44,020	44,020					
Склад известкового камня, галерея подачи известняка печи обжига	100			0,431	0,014			
Здание натяжной станции конвейера	100	112,680						
Здание цеха глиноземоразводки	100		167,976	167,976	5,522			
	Итого:	156,700	211,996	168,407	5,536			

1.33 Осадок гашения извести при производстве известкового молока (3 46 910 01 39 4)

Отход образуется в Химкорпусе. Для обоснования норматива образования отхода согласно п.7 МУ принята единица произведенной продукции — целлюлозы. Копии форм федерального статистического наблюдения № 2-ТП (отходы) «Сведения об образовании, обработке, утилизации, обезвреживании, размещении отходов производства и потребления» за 2018—2020 года, представлены в Приложении 1 (книга 2, стр. 547-569). Результаты расчета представлены в таблице 4.33.1.

Таблица 4.33.1 – Результат расчета

Наименование	Количество выпускае- мой продукции, тонн				ество обра отхода, т		Норма образо- вания отхода т/	Норматив обра- зования отхода,
продукции	2018	2019	2020	2018	2019	2020	т целлюлозы	т/год
Выработка цел- люлозы	367760	372400	383125	4076	6071	5544	0,0139	5345,379

1.34 Отходы рубероида (8 26 21 001 51 4)

Для обоснования норматива образования отхода согласно п. 8 МУ используются показатели, характеризующие образование отхода – ведомости объемов работ по сносу зданий и сооружений, представленные в Приложении 1 (книга 2, стр. 542-546). Норматив образования отхода рассчитан по количеству выполненных работ (услуг), норма образования отхода принята 100% в соответствии Правилами разработки и применения нормативов трудноустранимых потерь и отходов материалов в строительстве РДС-82-202-96. Результаты расчета представлены в таблице 4.34.1.

Таблица 4.34.1 – Результаты расчета образования отхода

	Норма	Норматив образования отхода, т/год						
Объект	образовани я отхода, %	2022	2023	2024-2028	по 17.01.2029			
Здание трансформаторной станции ТП №4	100	38,297	38,297					
Склад известкового камня, галерея подачи извести на печи обжига	100			0,417	0,014			
Здание цеха глиноземоразводки	100		33,829	33,829	1,112			
	Итого:	38,297	72,126	34,246	1,126			

1.35 Золосажевые отложения при очистке оборудования ТЭС, ТЭЦ, котельных малоопасные (6 18 902 02 20 4)

Для обоснования норматива образования отхода, согласно п. 7 МУ используется количество сжигаемого топлива. Расчет произведен в соответствии с Методическими рекомендациями по разработке проекта нормативов предельного размещения отходов для теплоэлектростанций, теплоцентралей, промышленных и отопительных котельных. Санкт-Петербург 1998 г.,

Методическими указаниями по расчету выбросов загрязняющих веществ при сжигании топлива на котлах производительностью до 30 т/ч. Москва, 1985 г. и Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час. Справочные данные предприятия представлены в Приложение 1 (книга 2, стр. 367).

Отход образуется при работе ТЭЦ-1 и ЦРТМ:

Годовой расход топлива, сжигаемого на котлах №1-3: мазут — 21823 т/год; древесное топливо — 7428 т/год; пек — 3649,7 т/год.

Влажность отхода составляет 21,6%

Расчет образование отходов от сжигания древесного топлива (котлы №1-3):

Количество золы, образующейся от чистки топок, рассчитывается по формуле:

$$G_T = 0.01 \cdot B \cdot a_{III} \cdot (Ap + g_4 \cdot Q/32.6), T/год;$$

Количество золы, оседающей в газоходах, определяется по формуле:

Gгазоход. =
$$0.01 \cdot B \cdot \kappa \cdot (Ap + g4 \cdot Q/32.6)$$
, т/год;

Количество золы, оседающей в золоуловителе, определяется по формуле:

Gзолоулов. =
$$0.01 \cdot B \cdot (1 - a \text{ш} - \text{к}) \cdot (\text{Ap} + \text{g4} \cdot \text{Q/32,6}) \cdot \text{n}, \text{т/год};$$

где: В – расход топлива, т/год;

аш – доля золы топлива, превращающегося в шлак, в долях ед.;

Ap — зольность топлива, %;

g4 – потеря с механической неполнотой сгорания, %;

О – теплотворная способность топлива, МДж/кг;

к - доля золы топлива, летучей золы, оседающей на газоходах котла, в долях;

n - эффективность очистки в электрофильтре, в долях ед.

32,68 - теплота сгорания углерода, МДж/кг.

Количество золы, образующейся от чистки топок, рассчитывается по формуле:

$$G_T = 0.01 \cdot 7428 \cdot 0.9 \cdot (0.6 + 2 \cdot 10.93/32.6) = 84.829 \text{ T/год};$$

Количество золы, оседающей в газоходах, определяется по формуле:

Gгазоход. =
$$0.01 \cdot 7428 \cdot 0.01 \cdot (0.6 + 2 \cdot 10.93/32.6) = 0.943$$
 т/год;

Общее количество образуемых отходов: Gotx= Gt + Gгазоход+ Gзолоулов, т/год

С учетом влажности отхода: Gotx = (84,829 + 0.943 + 0)/0.784 = 109,403 т/год

Расчет образование отходов от сжигания мазутного топлива:

Количество золы, образующейся от чистки топок, рассчитывается по формуле:

$$G_T = 0.01 \cdot B \cdot a_{\text{III}} \cdot (Ap + g_4 \cdot Q/32.6), \text{ т/год};$$

Количество золы, оседающей в газоходах, определяется по формуле:

Gгазоход. =
$$0.01 \cdot B \cdot \kappa \cdot (Ap + g4 \cdot Q/32.6)$$
, т/год;

Количество золы, оседающей в золоуловителе, определяется по формуле:

где: В – расход топлива, т/год;

аш – доля золы топлива, превращающегося в шлак, в долях ед.;

Ap – зольность топлива, %;

g4 – потеря с механической неполнотой сгорания, %;

Q – теплотворная способность топлива, МДж/кг;

к - доля золы топлива, летучей золы, оседающей на газоходах котла, в долях;

n – эффективность очистки в электрофильтре, в долях ед.

32,68 - теплота сгорания углерода, МДж/кг.

Количество золы, образующейся от чистки топок, рассчитывается по формуле:

$$G_T = 0.01 \cdot 25272, 7 \cdot 0.9 \cdot (0.042 + 0.5 \cdot 40.61/32.6) = 129.451 \text{ т/год};$$

Количество золы, оседающей в газоходах, определяется по формуле:

Gгазоход. =
$$0.01 \cdot 25272.7 \cdot 0.05 \cdot (0.042 + 0.5 \cdot 40.61/32.6) = 7.192$$
 т/год;

Общее количество образуемых отходов: Gotx= Gt + Gгазоход+ Gзолоулов, т/год

С учетом влажности отхода: Gotx = (129,451 + 7,192 + 0)/0,784 = 174,289 т/год

Годовой расход топлива, сжигаемого на ЦРТМ: пек – 3068,721 т/год.

Расчет образования золы, от работы ЦРТМ определяется по формуле:

$$M_3 = 10^{-6} \cdot G_{V2O5} \cdot B \cdot \eta_3$$
, т/год

где: Gv205 - содержание пентаоксида ванадия в мазуте, 200 г/т;

В - расход топлива, сжигаемого на ЦРТМ, т/год;

ηз - коэффициент оседания пентаоксида ванадия на поверхностях нагрева, равный 0,05.

$$M_3 = 10^{-6} \cdot 200 \cdot 3068,721 \cdot 0.05 = 1.140$$
 т/год

Количество сажи, отлагающейся на поверхностях нагрева, определяется по формуле:

$$Mc = 0.01 \cdot B \cdot q \cdot 0.02 \cdot Q_T/32680$$

где:

q- потери с механическим недожогом, равны 0,02%;

Qт- теплотворная способность топлива, равна 40421 кДж·кг

0,02 - коэффициент оседания сажи на поверхностях нагрева.

$$Mc=0.01 \cdot 3068.721 \cdot 0.02 \cdot 0.02 \cdot 40421/32680 = 0.015 \text{ T/год}$$

Норматив образования золосажевых отложений составляет, определяется по формуле:

$$Motx = M_3 + M_{c, T}/год$$

$$Motx = 1.140 + 0.015 = 1.155$$
 т/год

Общее количество отходов: 109,403 + 174,289 + 1,155 = 284,847 т/год

1.36 Пыль (порошок) абразивные от шлифования черных металлов с содержанием металла менее 50% (3 61 221 02 42 4)

Для обоснования норматива образования отхода согласно п. 8 МУ используются удельные отраслевые нормативы образования отхода, приведенные в Справочных данных по выделениям металло-абразивной пыли Методических рекомендаций по оценке объемов образования отходов

производства и потребления, Москва, 2003, ГУ НИЦПУРО. Справочные данные предприятия представлены в Приложении 1 (книга 2, стр. 391-393).

Норматив образования отхода рассчитан по формуле:

 $M\pi = \sum Ci \cdot 3600 \cdot Ti \cdot K$ эо $\cdot \eta$, т/год

где: Мп – масса абразивной пыли, собираемой в бункере очистительной установки, т/год;

Сі – удельное выделение пыли на станке і-той марки, г/сек;

Ті – число часов работы заточного станка і-той марки в год;

Кэо – коэффициент эффективности воздухоприемника, равный 0,9;

η - степень очистки воздуха в воздухоочистительной установке, доли от 1.

Результаты расчета представлены в таблице 4.36.1.

Таблица 4.36.1- Результаты расчета

			Xa	рактеристик	си оборудов	ания			Норматив обра-
Цех	Наименование	Марка	Кол- во	Диаметр абраз. круга	Время работы	Степень очистки	Удельное выде- ление пыли, г/сек	Коэф. эф. возду- хоприемника	зования отхода, т/год
	Заточной	332Б	2	400	750	0,95	0,048	0,9	0,111
РМЦ	Заточной	364	1	450	500	0,95	0,054	0,9	0,083
ТИЩ	Заточной	3E634	1	350	500	0,95	0,04	0,9	0,062
	Заточной	332Б79	1	400	500	0,95	0,048	0,9	0,074
Химкор-	Заточной	Визас ВЗ-379-01	1	350	400	0,985	0,04	0,9	0,051
	Заточной	Визас ВЗ-379	1	350	400	0,985	0,04	0,9	0,051
пус	Заточной		1	350	250	0,985	0,04	0,9	0,032
Вароч-	Заточной	KR132 2/401311/28	1	350	400	0,985	0,04	0,9	0,051
ный цех	Заточной	ВизасВ3-379-01	1	350	250	0,985	0,04	0,9	0,032
	Заточной		1	350	250	0	0,04	0,9	0,000
ТЭС-2	Заточной	3Б634	2	400	150	0	0,048	0,9	0,000
	Заточной	B3-379-01	2	325	200	0,985	0,04	0,9	0,026
	Точильно-шлифовальный	B3-379-01	2	350	250	0	0,1042	0,9	0,083
ТЭЦ-1	Точильно-шлифовальный		4	280	252	0	0,0208	0,9	0,000
	Точильно-шлифовальный	B3-379-01	2	350	250	0	0,1042	0,9	0,000
	Заточной	B3-379- 01	5	350	502	0	0,04	0,9	0,000
	Ножеточильный	ТЧН 21-5	3	200	1688	0	0,008	0,9	0,000
ппп	Заточной		1	350	236	0	0,048	0,9	0,000
ЛПЦ	Заточной	СТчПк22	1	300	858	0	0,04	0,9	0,000
	Заточной		1	350	236	0	0,04	0,9	0,000
ЦРТМ	Заточной	ВизасВЗ-379-01	1	350	400	0,985	0,04	0,9	0,051
	Наждак		1	400	84	0	0	0,9	0,000
	Наждак		1	250	84	0	0	0,9	0,000
Γ	Наждак		1	250	84	0	0	0,9	0,000
Бумаж-	Наждак		1	250	84	0	0	0,9	0,000
ная фаб-	Шлифовальный		1	400	1764	0	0	0,9	0,000
рика	Универсально-заточной	3E642E	1	150	0	0	0	0,9	0,000
	Шлифовальная машина	MPBBG150	1	150	0	0	0	0,9	0,000
	Станок шлифовальный	ТШ-3	1	400	0	0	0	0,9	0,000
АТЦ	Точильно-шлифовальный	ТШ3-2	2	400	920	0	0,1042	0,9	0,000
ждц	Точильно-шлифовальный	ТШ-2	1	300	120	0,985	0,1042	0,9	0,040
ЦРО	Заточной	B3-379	2	350	500	0,985	0,04	0,9	0,064
СБО	Заточной	ДВ 643	3	400	376	0,9	0,048	0,9	0,053
								Итого:	0,862

1.37 Отходы базальтового волокна и материалов на его основе (4 57 112 01 20 4)

Для обоснования норматива образования отхода согласно п.8 МУ используется показатели, характеризующие образование отхода – данные предприятия о расходе базальтового волокна при проведении ремонтных работ за последние 3 года. Согласно п.7 МУ за расчетную единицу продукции (работ) принято количество ремонтных работ. Справочные данные предприятия о расходе базальтового волокна представлены в Приложении 1, книга 2, стр. 383. Графики проведения ремонтных работ за 2018-2020 год представлены в Приложении 1, книга 2, стр.534-541.

Расчетная формула: Ho= Σ Hoi/T, т/год

где: Но – предлагаемый норматив образования отхода, т/год;

Ноі – удельное количество образованного в і-том году отхода, т;

Т – количество лет в рассматриваемом периоде.

Удельный вес базальтового волокна – 60 кг/м^3 .

Результаты расчета норматива образования отхода представлены в таблице 4.37.1.

Таблица 4.37.1- Результаты расчета образования отхода на один ремонт

Цех	Расход материалов, м ³ /год			Расход материалов, т/год		Количество ре- монтов, шт.			Образование от- хода, кг/ремонт			Среднее значение,	
,	2018	2019	2020	2018	2019	2020	2018	2019	2020	2018	2019	2020	кг/ремонт
Химкор- пус	1,2		3	0,072	0,000	0,180				0,493	0,000	0,596	0,363
ТЭС-2		139,05	27	0,000	8,343	1,620				0,000	27,626	5,364	10,997
Бумажная фабрика	7,5			0,450	0,000	0,000	146	302	302	3,082	0,000	0,000	1,027
ТЭЦ-1	40,35	16,8		2,421	1,008	0,000				16,582	3,338	0,000	6,640
ЦТП	15	45	26,75	0,900	2,700	1,605				6,164	8,940	5,315	6,806
ЦРТМ	15	7	15	0,900	0,420	0,900				6,164	1,391	2,980	3,512
РСЦ	2,295	1,08		0,1377	0,0648	0,000				0,943	0,215	0,000	0,386

Расчет годового образования отхода произведен в соответствии со средним значением образования отхода за один ремонт определенным в таблице 4.37.1 и графиком ремонта основного оборудования Приложении 1 (книга 2, стр.533). Расчет годового образования отхода по подразделениям представлено в таблице 4.37.2.

Таблица 4.37.2 – Результаты расчета норматива образования отход

	Образование	Колич	ество ремонт	ов, шт.	Норматив образования отхода, т/год			
Цех	отхода, кг/ре- монт	c 18.01.2022	2022-2028 no 17.01.2029		c 18.01.2022	2022-2028	по 17.01.2029	
Химкор- пус	0,363				0,087	0,091	0,004	
ТЭС-2	10,997		251		2,628	2,760	0,132	
Бумажная фабрика	1,027	239		12	0,245	0,258	0,012	
ТЭЦ-1	6,640				1,587	1,667	0,080	
ЦГП	6,806				1,627	1,708	0,082	
ЦРТМ	3,512				0,839	0,881	0,042	
РСУ	0,386				0,092	0,096	0,005	
	_	7,106	7,462	0,357				

1.38 Резиновые перчатки, утратившие потребительские свойства, незагрязненные (4 31 14 101 20 4)

Для обоснования норматива образования отхода согласно данным п. 7 МУ за расчетную единицу принята единица человек – количество сотрудников, которых предприятие обеспечивает

резиновыми перчатками. Справочные данные предприятия представлены в Приложении 1 (книга 2, стр. 389, 390). Расчет норматива образования отхода произведен согласно Методическим рекомендациям по оценке объемов образования отходов производства и потребления, Москва, 2003, ГУ НИЦПУРО:

 $Ocoд = mcoд \cdot N \cdot Kuзh \cdot Kзагр \cdot 10^{-3}$

где: Осод – масса вышедшей из употребления спецодежды, т/год;

теод – масса единицы изделия в исходном состоянии, кг;

Кизн – коэффициент, учитывающий потери массы спецодежды данного вида в процессе эксплуатации, равен 0,85;

Кзагр – коэффициент, учитывающий загрязненность спецодежды данного вида, равен 1,03;

N – количество спецодежды вышедшей из употребления, шт./год, определяется по формуле:

 $N = P\phi/T_H$

где: Рф – количество спецодежды данного вида, находящихся в носке, шт.;

Тн - нормативный срок носки спецодежды данного вида, лет.

Результаты расчета представлены в таблице 4.38.1.

Таблица 4.38.1- Результаты расчета

Цех	Норма выдачи на человека	Кол- во в носке, шт.	Норма- тив. срок носки, мес.	Масса но- вых пер- чаток, кг	Коэф. по- тери массы изделий, доли от 1	Коэф. за- грязнен- ности, доли от 1	Норматив образова- ния отхода, т/год
ЛПП	1	216	6	0,5	0,65	1,15	0,1615
Варочный цех	1	49	6	0,5	0,65	1,15	0,0366
Химкорпус	1	97	6	0,5	0,65	1,15	0,0725
ЦРТМ	1	57	6	0,5	0,65	1,15	0,0426
ТЭС-2	1	83	6	0,5	0,65	1,15	0,062
Бумажная фаб- рика	1	247	6	0,5	0,65	1,15	0,1846
ТЭЦ-1	1	194	6	0,5	0,65	1,15	0,145
XBO	1	31	6	0,5	0,65	1,15	0,0232
АТЦ	1	53	6	0,5	0,65	1,15	0,0396
ждц	1	58	6	0,5	0,65	1,15	0,0434
ГСМ и АЗС, ма- зутное хоз-во;	1	14	6	0,5	0,65	1,15	0,0105
РМЦ	1	27	6	0,5	0,65	1,15	0,0202
РСУ	1	15	6	0,5	0,65	1,15	0,0112
ЦРО	1	40	6	0,5	0,65	1,15	0,0299
КИПиА	1	35	6	0,5	0,65	1,15	0,0262
ЦГП	1	93	6	0,5	0,65	1,15	0,0695
СКК	1	48	6	0,5	0,65	1,15	0,0359
СПЛ	1	10	6	0,5	0,65	1,15	0,0075
Заводоуправление	1	4	6	0,5	0,65	1,15	0,003
СБО	1	62	6	0,5	0,65	1,15	0,0463
						Итого:	1,071

1.39 Отходы асбеста в кусковой форме (3 48 511 01 20 4)

Для обоснования норматива образования отхода согласно п. 8 МУ используется показатели, характеризующие образование отхода — данные предприятия о расходе асбеста за последние 3 года. Согласно п.7 МУ за расчетную единицу продукции (работ) принято количество ремонтных работ. Справочные данные предприятия о расходе асбеста представлены в Приложении 1, книга

2, стр. 377, 378. Графики проведения ремонтных работ 2018-2020г приведены в Приложении 1, стр. 534-541.

Расчетная формула:

Ho= Σ Hoi/T, т/год

где: Но – предлагаемый норматив образования отхода, т/год;

Ноі – удельное количество образованного в і-том году отхода, т;

Т – количество лет в рассматриваемом периоде.

Результаты расчета норматива образования отхода представлены в таблице 4.39.1.

Таблица 4.39.1- Результаты расчета образования отхода на один ремонт

Цех	Расход	Количество ремон- тов, шт.			Образова	ние отхода монт	Среднее зна- чение, кг/ре-			
	2018	2019	2020	2018	2019	2020	2018	2019	2020	монт
ТЭЦ-1	5,0198	4,387	2,878		302	302	34,382	14,526	9,530	19,479
Химкорпус	0,000	0,000	0,055	1.46			0,000	0,00	0,182	0,061
ТЭС-2	0,3	1,044	0,000	146			2,055	3,457	0,000	1,837
ЦΤП	1.5	4,227	1.8				10,274	13,997	5,960	10,077

Расчет годового образования отхода произведен в соответствии со средним значением образования отхода за один ремонт определенным в таблице 4.39.1 и графиком ремонта основного оборудования (Приложение 1, книга 2, стр. 533). Расчет годового образования отхода по подразделениям представлено в таблице 4.39.2.

Таблица 4.39.2 – Результаты расчета норматива образования отход

	Образование	Количест	во ремонтов, і	шт./год	Норматив образования отхода, т/год			
Цех	отхода, кг/ре- монт	c 18.01.2022	2023-2028	по 17.01.2029	c 18.01.2022	2023-2028	по 17.01.2029	
ТЭЦ-1	19,479		251		4,655	4,889	0,234	
Химкорпус	0,061	239		12	0,015	0,015	0,001	
ТЭС-2	1,837	239		12	0,439	0,461	0,022	
ЦТП	10,077				2,408	2,529	0,121	
				Итого:	7,518	7,894	0,377	

1.40 Шлак сварочный (9 19 100 02 20 4)

Для обоснования норматива образования отхода согласно Методическим рекомендациям по оценке объемов образования отходов производства и потребления, Москва, 2003, ГУ НИЦПУРО принят удельный норматив образования сварочного шлака равный 0,12.

Справочные данные предприятия представлены в Приложении 1 (книга 2, стр. 378-381).

Расчет проводится по формуле:

 $Motx = Cшл.c \cdot Pэ, т/год$

где: Сшл.с – норматив образования сварочного шлака 0,12;

Рэ – масса израсходованных сварочных электродов, т/год;

Результаты расчета представлены в таблице 5.40.1.

Таблица 5.40.1- Результаты расчета

Har	Фактиче	ский расход электро	дов, кг	Норматив образова-
Цех	2018	2019	2020	ния отхода, т/год
ЛПЦ	146,4	139,2	39,2	0,013
Химкорпус	844,5	575,9	520,2	0,078
ТЭС-2	593	561,7	409	0,063
ЦРТМ	97	36	30	0,007
Бумажная фабрика	358	356,1	143,1	0,034

ТЭЦ-1	553	290,7	111	0,038
АТЦ	76	78	60	0,009
ЖДЦ	138	51,5	89	0,011
РМЦ		202,06	477,47	0,027
ЦРО	750,5	539,5	564,1	0,074
СБО	165	143	71	0,015
			Итого:	0,368

1.41 Отходы зачистки емкостей хранения, приготовления растворов реагентов (коагулянтов) на основе соединений алюминия (7 10 207 21 39 4)

Для обоснования норматива образования отхода согласно п. 7 МУ принята единица произведенной продукции — целлюлозы. Копии форм федерального статистического наблюдения № 2-ТП (отходы) «Сведения об образовании, обработке, утилизации, обезвреживании, размещении отходов производства и потребления» за 2018—2020 года, представлены в Приложении 1, книга 2, стр. 547-569. Результаты расчета представлены в таблице 4.41.1.

Таблица 4.41.1- Результат расчета

Продукция		Количество выпускае- мой продукции, тонн			ство образо отхода, тон		Норма обра- зования от-	Норматив обра- зования отхода,	
	2018	2019	2020	2018	2019	2020	хода, кг/ т целлюлозы	т/год	
Выработка целлюлозы	367760	372400	383125	28,5	32	31	0,0814	31,204	

1.42 Смет с территории предприятия малоопасный (7 33 390 01 71 4)

Для обоснования норматива образования отхода согласно данным п. 7 МУ за расчетную единицу принята единица площади. Согласно данным СП 42.13330.2016 «Градостроительство. Планировка и застройка городских и сельских поселений». Актуализированная редакция СНиП 2.07.01-89* (утв. приказом Министерства строительства и жилищно-коммунального хозяйства РФ от 30 декабря 2016 г. N 1034/пр) (с изменениями и дополнениями) смет с 1 м² твердых покрытий составляет 5 кг. Справочные данные предприятия представлены в Приложении 1 (книга 2, стр. 368).

Норматив образования отхода рассчитан по формуле: $Motx = S \cdot m \cdot 10^{-3}$, т/год

где: $S - площадь территории, подлежащая уборке, <math>M^2$;

m — удельная норма образования смета на 1 m^2 территории, $\kappa \Gamma/m^2$.

Результаты расчета представлены в таблице 4.42.1.

Таблица 4.42.1- Результаты расчета

Цех	Площадь территории подлежащая уборке, м ²	Удельная норма образования смета на 1 м ² территории, кг/м ²	Норматив образова- ния отхода, т/год
ЛПЦ	5520	5	27,60
Варочный цех	600	5	3,00
Химкорпус	2444	5	12,22
Бумажная фабрика	2880	5	14,40
ТЭЦ-1	2220	5	11,10
СБО	2000	5	10,00
АТЦ	1000	5	5,00
ждц	160	5	0,80
Склад ГСМ и АЗС	20	5	0,10
РМЦ	112	5	0,56
РСУ	600	5	3,00
ЦРО	40	5	0,20

		Итого:	123,500
охрана	300	3	1,50
Вневедомственная	300	5	1,50
Заводоуправление	5000	5	25,00
ЦГП	1704	5	8,52
КИПиА	100	5	0,50

1.43 Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15%) (9 19 204 02 60 4)

Для обоснования норматива образования отхода согласно п.7 МУ за расчетную единицу продукции (работ) принято количество ветоши, израсходованной за последние 3 года. Справка предприятия о количестве годового расхода ветоши за последние 3 года представлена в Приложении 1, книга 2, стр. 377.

Расчет норматива образования отхода определено согласно Методическим рекомендациям по разработке проекта нормативов предельного размещения отходов для теплоэлектростанций, теплоэлектроцентралей, промышленных и отопительных котельных». СПб, 1998 г;

Справочные данные предприятия (Приложение 1).

Образуется в результате ремонта и обслуживания оборудования, автотранспорта и спецтехники.

Годовое образование отхода рассчитано по формуле:

 $N = Mo \cdot (1 + M/100 + W/100) \cdot 0,001$

где: N - масса отходов ветоши, т/год;

Мо – масса ветоши, израсходованной за год, кг;

M – содержание в отходе масла, %; (данные из паспорта отхода);

W – содержание в отходе влаги, %. (данные из паспорта отхода).

Результаты расчета норматива образования отхода представлены в таблице 4.43.1.

Таблица 4.43.1- Результаты расчета

Цех	Годовой р	Годовой расход ветоши, кг				Годовое	образовани т/год	е отхода,	Норматив обра- зования отхода
7	2018	2019	2020	M, %	W, %	2018	2019	2020	т/год
ЛПП	120,000	140,000	80,000	2,7	13,5	0,139	0,163	0,093	0,132
Варочный цех	90,000	200,000	290,000	2,7	13,5	0,105	0,232	0,337	0,225
Химкор-	90,000	200,000	290,000	2,7	13,5	0,105	0,232	0,337	0,225
ТЭС-2	190,000	220,000	150,000	2,7	13,5	0,221	0,256	0,174	0,217
ЦРТМ	60,000	190,000	0,000	2,7	13,5	0,070	0,221	0,000	0,097
Бумажная фабрика	900,000	1370,000	930,000	2,7	13,5	1,046	1,592	1,081	1,239
ТЭЦ-1	580,000	361,000	625,000	2,7	13,5	0,674	0,419	0,726	0,607
АТЦ	50,000	100,000	0,000	2,7	13,5	0,058	0,116	0,000	0,058
ждц	210,000	150,000	100,000	2,7	13,5	0,244	0,174	0,116	0,178
РМЦ	30,000	70,000	0,000	2,7	13,5	0,035	0,081	0,000	0,039
РСУ	5,000	0,000	2,000	2,7	13,5	0,006	0,000	0,002	0,003
ЦРО	60,000	120,000	85,000	2,7	13,5	0,070	0,139	0,099	0,103
КИПиА	10,000	0,000	0,000	2,7	13,5	0,012	0,000	0,000	0,004
ЦГП	20,000	20,000	0,000	2,7	13,5	0,023	0,023	0,000	0,015
СБО	140,000	140,000	80,000	2,7	13,5	0,163	0,163	0,093	0,139
								Итого:	3,280

1.44 Тара из черных металлов, загрязненная лакокрасочными материалами (содержание менее 5%) (4 68 112 02 51 4)

Для обоснования норматива образования отхода согласно п. 8 МУ используются показатели, характеризующие образование отхода – данные предприятия о расходе лакокрасочных материалов при проведении ремонтных работ. Согласно п.7 МУ за расчетную единицу продукции (работ) принято количество израсходованных лакокрасочных материалов. Данные предприятия о расходе лакокрасочных материалов представлены в Приложении 1 (книга 2, стр. 370). В таблице 4.44.1 представлены результаты расчета.

Таблица 4.44.1- Результаты расчета

Цех	Годовой расход материалов, т/год	Вес в таре, кг	Масса одной упаковки, кг	Кол-во емко- стей, шт.	Норматив образо- вания отхода, т/год
ТЭС-2	650	36,5	2,5	18	0,045
Бумажная фаб- рика	459	45	3,4	10	0,035
ТЭЦ-1	275	36,5	2,5	8	0,019
СБО	370	36,5	2,5	10	0,025
ЖДЦ	327,61	36,5	2,5	9	0,022
РСУ	2490,47	36,5	2,5	68	0,171
				Итого:	0,316

1.45 Покрышки пневматических шин с металлическим кордом отработанные (9 21 130 02 50 4)

Покрышки пневматических шин образуются при техническом обслуживании автотранспорта и спецтехники в цехе АТЦ. Для обоснования норматива образования отхода согласно данным п. 7 МУ за расчетную единицу принята единица расстояния – километр. Расчет норматива образования отхода произведен согласно Методическим рекомендациям по оценке объемов образования отходов производства и потребления, Москва, 2003, ГУ НИЦПУРО;

Справочные данные предприятия представлены в Приложении 1 (книга 2, стр. 394-397).

Расчетная формула:

 $M_{\text{III.}} = N \cdot K_{\text{II}} \cdot K_{\text{III}} \cdot m_{\text{III}} \cdot L/H_{\text{L}} \cdot 10^{-3}$, т/год

где: Мш. – масса изношенных шин, образующихся за год, т/год;

 $K_{\text{и}}$ — коэффициент износа шин (0,9 — для легковых автомобилей; 0,93 — для грузовых автомобилей);

Кш – количество шин, установленных на і-той марке автомобиля, шт.;

m_ш – масса одной шины (новой), і-той марки, кг;

L – среднегодовой пробег автомобилей с шинами і-той марки, тыс.км;

H_L - нормативный пробег і-той модели шины, тыс.км.

Результаты расчета представлены в таблице 4.45.1.

Таблица 4.45.1 - Результаты расчета

,	а 4.45.1 - 1 с зультаты ра		Кол-во,	Годовой про-	Покрыі	шки	Коэффициент	Нормативный	Норматив
№ п/п	Тип ТС	Марка ТС	ЩТ.	бег, км/год	Кол-во, шт.	Вес, кг	износа шин	пробег шин	образования отхода, т/год
1	Прочие легковые	УАЗ 309	1	2771	5	31,8	0,9	33000	0,012
2	Прочие легковые	УАЗЗЗОЗ фургон	1	12600	5	31,8	0,9	33000	0,055
3	Легковой	BA3-21114	1	15525	5	6,9	0,9	33000	0,015
4	Легковой	BA3-21114	1	0	5	6,9	0,9	33000	0,000
5	Прочие легковые	УАЗ 31512	1	9472	5	31,8	0,9	33000	0,041
6	Легковой	УАЗ 3303Фург.	1	6760	4	18	0,9	33000	0,013
7	Легковой	УАЗ Патриот	1	2503	5	21,8	0,9	33000	0,007
8	Грузовой	УАЗ 390994	1	6801	5	31,8	0,93	53000	0,019
9	Грузовой	УАЗ 390994	1	2000	6	31,8	0,93	53000	0,007
10	Бортовой	ЗИЛ 431412	1	0	7	42,1	0,93	53000	0,000
11	Бортовой	KAMA3 53205	1	11197	10	55	0,93	53000	0,108
12	Бортовой	ЗИЛ 431410	1	17404	7	42,1	0,93	53000	0,090
13	Бортовой	ЗИЛ 431410	1	15443	7	42,1	0,93	53000	0,080
14	Бортовой	ЗИЛ 431410	1	11209	7	42,1	0,93	53000	0,058
15	Седельный тягач	KAMA3 5410	1	15431	11	200	0,93	53000	0,596
16	Самосвал	MA3 5551	1	0	7	118,4	0,93	53000	0,000
17	Самосвал	MA3 5551	1	16025	7	118,4	0,93	53000	0,233
18	Самосвал	MA3 5551	1	0	7	118,4	0,93	53000	0,000
19	Самосвал	KAMA3 55111	1	11302	11	118,4	0,93	53000	0,258
20	Самосвал	KAMA3 55111	1	0	12	118,4	0,93	53000	0,000
21	Самосвал	MA3 551605	1	28185	11	118,4	0,93	53000	0,644
22	Самосвал	MA3 551605	1	0	11	118,4	0,93	53000	0,000
23	Фургон	ЗИЛ 47410С	1	0	6	42,1	0,93	53000	0,000
24	Топливоцистерна	MA3 5337	1	0	7	65	0,93	53000	0,000
25	Топливозаправщик	ЗИЛ 131	1	0	7	65	0,93	53000	0,000
26	Автоцистерна пожарная	ЗИЛ 131 АЦ-40	1	0	6	59,4	0,93	53000	0,000
27	Автоцистерна пожарная	АЦ-6.0-60(43118)461420	1	1580	6	120	0,93	53000	0,020
28	Автобус	ПАЗ 32053-07	1	69790	7	59,4	0,93	53000	0,509
29	Автобус	Икарус 256.74	1	0	7	59,4	0,93	53000	0,000
30	Автобус	Икарус 256.74	1	277	7	59,4	0,93	53000	0,002
31	Автокран	КАМАЗ 53212 МКАТ-16 г/п 16т	1	0	11	289,5	0,93	53000	0,000
32	Автокран	МАЗ 5337 КС-3577 г/п 14т	1	3574	7	289,5	0,93	53000	0,127
33	Автокран	KC- 55721	1	3389	13	289,5	0,93	53000	0,224
34	Пр.авт. со спецкузовами	KO 503	1	0	7	42,1	0,93	53000	0,000
35	Пр.специализир.	KAMA3 53422	1	7603	11	55	0,93	53000	0,081
36	Пр.специальный	MA3 630305	1	22981	11	289,5	0,93	53000	1,284

37	Пр.специализир.	ГАЗ 53-14-01	1	0	7	36	0,93	53000	0,000
38	Мастерская	ЗИЛ 131	1	0	7	65	0,93	53000	0,000
39	Лесовоз	MA35516A8-(336)	1	12944	11	65	0,93	53000	0,162
40	Прицеп	КЗАП 9370	1	0	8	42,1	0,93	53000	0,000
41	Прицеп	КЗАП 9370	1	0	8	42,1	0,93	53000	0,000
42	Прицеп	2-П-5	1	0	8	65	0,93	53000	0,000
1	Бульдозер	ЧетраТ11.02 KБ -1	1	0	гусеницы				
2	Бульдозер	Б-10.1111-1Е	1	0	гусеницы				
3	Погрузчик	Амкодор 342 В	1	0	4	130	0,93	53000	0,000
4	Трактор колесный	T-40AM	1	0	4	47	0,93	53000	0,000
5	Трактор колесный	MT3-82	1	0	4	59,4	0,93	53000	0,000
6	Трактор колесный	MT3-82.1	1	0	4	59,4	0,93	53000	0,000
7	Трактор колесный	MT3-82	1	0	4	59,4	0,93	53000	0,000
8	Трактор колесный	MT3-82	1	0	4	59,4	0,93	53000	0,000
9	Экскаватор	ЭО 2626	1	0	4	166,4	0,93	53000	0,000
10	Погрузчик	TO 28	1	5536	4	130	0,93	53000	0,051
11	Экскаватор	ЭО 2625	1	0	4	100	0,93	53000	0,000
12	Экскаватор	K406A1	1	20000	4	47	0,93	53000	0,066
13	Погрузчик гидравл.	L-34	1	20000	4	166,4	0,93	53000	0,234
14	Погрузчик гидравл.	L-34	1	20000	4	166,4	0,93	53000	0,234
15	Погрузчик фронталь- ный	Л-34	1	20000	4	166,4	0,93	53000	0,234
16	Прицеп тракторный	1ПТС - 2	1	0	2	38	0,93	53000	0,000
17	Прицеп тракторный	ПСЕ – Ф-12,5Б	1	0	4		0,93	53000	0,000
18	Прицеп тракторный	2 ПТС- 4 887Б	1	0			0,93	53000	0,000
19	Экскаватор-погрузчик	VOLVO BL 71 B	1	20000	4	44,2	0,93	53000	0,062
								Итого:	5,524

1.46 Мусор от офисных и бытовых помещений организаций несортированный (исключая крупногабаритный) (7 33 100 01 72 4)

Для обоснования норматива образования отхода согласно данным п. 7 МУ за расчетную единицу принята единица человек. Согласно данным Сборнику удельных показателей образования отходов производства и потребления, М, 1999г среднегодовая норма образования и накопления отходов для предприятий составляет 40 кг на сотрудника. Справочные данные предприятия представлены в Приложении 1 (книга 2, стр. 368, 369).

Отход образуется в результате жизнедеятельности персонала, рассчитан по формуле:

Пнтбо = $N \cdot H / 1000$, т/год

где: N – количество сотрудников, чел;

Н – норматив образования мусора, кг/чел.;

Таблица 4.46.1- Результаты расчета

Цех	Численность сотрудников, чел.	Среднегодовая норма образования и накопления отходов, кг/чел.	Норматив образования отхода, т/год
ЛПЦ	224	40	8,960
Варочный цех	49	40	1,960
Химкорпус	97	40	3,880
TЭC-2	83	40	3,320
ЦРТМ	58	40	2,320
Бумажная фабрика	274	40	10,960
ТЭЦ-1	200	40	8,000
XBO	31	40	1,240
АТЦ	54	40	2,160
ждц	63	40	2,520
Склад ГСМ и АЗС, мазутное хозяйство;	14	40	0,560
РМЦ	27	40	1,080
РСУ	23	40	0,920
ЦРО	40	40	1,600
КИПиА	58	40	2,320
ЦГП; Цех складского хоз-ва	135	40	5,400
СКК	92	40	3,680
СПЛ	13	40	0,520
Столовая	6	40	0,240
Центральный медпункт	11	40	0,440
Заводоуправление	202	40	8,060
Вневедомственная охрана	5	40	0,200
СБО	83	40	3,320
		Итого:	73,660

1.47 Мусор от сноса и разборки зданий несортированный (8 12 901 01 72 4)

Для обоснования норматива образования отхода согласно п. 8 МУ используются показатели, характеризующие образование отхода – ведомости объемов работ по сносу зданий и сооружений, представленные в Приложении 1 (книга 2, стр. 542-546). Норматив образования отхода рассчитан по количеству выполненных работ (услуг), норма образования отхода принята 100% в соответствии Правилами разработки и применения нормативов трудноустранимых потерь и отходов материалов в строительстве РДС-82-202-96. Результаты расчета представлены в таблице 4.47.1.

Таблица 4.47.1- Результаты расчета образования отхода

-	acting, if I continue pactors	ооризовини	потпода	
	Объект		Норматив образования отхода, т/год	

	Норма образования отхода, %	2022	2023	2024-2028	по 17.01.2026
Здание трансформаторной станции ТП №4	100	890,671	890,671		
Склад известкового камня, галерея подачи извести на печи обжига	100			20,132	0,938
Здание натяжной станции конвейера	100	1051,054			
Кирпичная дымовая труба ТЭС-2	100	103,421	103,421	103,421	3,400
Здание цеха глиноземоразводки	100		2330,667	2330,667	108,552
	Итого:	2045,146	3324,759	2454,220	112,890

1.48 Отходы упаковочных материалов из бумаги и картона, загрязненные неметаллическими нерастворимыми или малорастворимыми минеральными продуктами (4 05 911 31 60 4)

Для обоснования норматива образования отхода согласно п. 8 МУ используются показатели, характеризующие образование отхода — данные предприятия о годовом расходе цемента при проведении ремонтных работ в цехе РСУ. Согласно п.7 МУ за расчетную единицу продукции (работ) принято количество используемого для проведения ремонтных работ цемента. Данные предприятия о расходе цемента представлены в Приложении 1 (книга 2, стр. 369, 382). В таблице 4.48.1 представлены результаты расчета.

Расчетная формула:

Ho= Σ Hoi/T, т/год

где: Но – предлагаемый норматив образования отхода, т/год;

Ноі – удельное количество образованного в і-том году отхода, т;

Т – количество лет в рассматриваемом периоде.

Таблица 4.48.1- Результаты расчета

Расход цемента, т		Вес в	ной упа-		, ,	ое образ хода, т/1		Норматив обра- зования отхода,			
2018	2019	2020	таре, т	ковки, кг	2018	2019	2020	2018	2019	2020	т/год
80,575	182,060	130,226	0,05	0,15	1612	3641	2605	0,242	0,546	0,391	0,393

1.49 Мониторы компьютерные жидкокристаллические, утратившие потребительские свойства

(4 81 205 02 52 4)

Для обоснования норматива образования отхода согласно п. 8 МУ используется критерий, указывающий на утрату товара потребительских свойств — данные предприятия о списании мониторов за последние 3 года (Приложении 1, книга 2, стр. 374). Расчет образования отхода производится по формуле:

Ho= Σ Hoi/T, т/год

где: Но –норматив образования отхода, т/год;

Ноі -количество образованного в і-том году отхода, т;

Т – количество лет в рассматриваемом периоде.

Исходные данные и расчет приведены в таблице 4.49.1

Таблица 4.49.1 - Результаты расчета

Наименова-		Количество списанной		Вес одной	Количес	ство образо	ванных	Норматив об-
	техники, шт.		, ,		отходов, кг	•	разования от-	
ние	2018	2019	2020	ед., кг	2018	2019	2020	хода т/год

Мониторы	49	32	30	3	147	96	90	0,111

1.50 Системный блок компьютера, утративший потребительские свойства (4 81 201 01 52 4) Для обоснования норматива образования отхода согласно п. 8 МУ используется критерий, указывающий на утрату товара потребительских свойств — данные предприятия о списании системных блоков за последние 3 года (Приложении 1, книга 2, стр. 374). Расчет образования отхода производится по формуле:

Ho= Σ Hoi/T, т/год

где: Но –норматив образования отхода, т/год;

Ноі -количество образованного в і-том году отхода, т;

Т – количество лет в рассматриваемом периоде.

Исходные данные и расчет приведены в таблице 4.50.1

Таблица 4.50.1 - Результаты расчета

Наименование		ество спи ехники, ш		Вес одной	Количество образованных от- ходов, кг			Норматив об- разования от-
	2018	2019	2020	ед., кг	2018	2019	2020	хода, т/год
Системный блок	5	10	15	7	35	70	105	0,070

1.51 Принтеры, сканеры, многофункциональные устройства (МФУ), утратившие потребительские свойства (4 81 202 01 52 4)

Для обоснования норматива образования отхода согласно п. 8 МУ используется критерий, указывающий на утрату товара потребительских свойств — данные предприятия о списании принтеров, сканеров и МФУ за последние 3 года (Приложении 1, книга 2, стр. 374). Расчет образования отхода производится по формуле:

Ho= Σ Hoi/T, т/год

где: Но –норматив образования отхода, т/год;

Ноі -количество образованного в і-том году отхода, т;

Т – количество лет в рассматриваемом периоде.

Исходные данные и расчет приведены в таблице 4.51.1

Таблица 4.51.1 - Результаты расчета

Наименова-			Вес одной	Количество образованных от- ходов, кг			Норматив обра- зования отхода,	
ние	2018	2019	2020	ед., кг	2018	2019	2020	т/год
Принтер	13	16	25	7	91	112	175	0,126
Сканер	3	7	10	3	9	21	30	0,020
МФУ	5	5	8	9	45	45	72	0,054
				•			Итого:	0,200

1.52 Клавиатура, манипулятор "мышь" с соединительными проводами, утратившие потребительские свойства (4 81 204 01 52 4)

Для обоснования норматива образования отхода согласно п. 8 МУ используется критерий, указывающий на утрату товара потребительских свойств — данные предприятия о списании клавиатур и компьютерных мышей за последние 3 года (Приложении 1, книга 2, стр. 374). Расчет образования отхода производится по формуле:

Ho= Σ Hoi/T, т/год

где: Но –норматив образования отхода, т/год;

Ноі –количество образованного в і-том году отхода, т;

Т – количество лет в рассматриваемом периоде.

Исходные данные и расчет приведены в таблице 4.52.1

Таблица 4.52.1 - Результаты расчета

		ичество с техники,		Вес одной	Количес	ство образов ходов, кг	Норматив образо- вания отхода,	
ние	2018	2019	2020	ед., кг	2018	2019	2020	т/год
Клавиатура	26	65	30	0,9	23,4	58,5	27	0,0363
Мышь	23	94	15	0,1	2,3	9,4	1,5	0,0044
							Итого:	0,041

1.53 Зола от сжигания древесного топлива умеренно опасная (6 11 900 01 40 4)

Для обоснования норматива образования отхода, согласно п. 7 МУ используется количество сжигаемого топлива. Расчет произведен согласно Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час.

Справочные данные предприятия представлены в Приложение 1 (книга 2, стр. 367).

Отход образуется при работе котельной СБО и корьевого котла №7 ТЭЦ-1.

Котельная СБО – расход древесного топлива 1656,113 т/год

Количество золы, образующейся от чистки топок, рассчитывается по формуле:

 $G_T = 0.01 \cdot B \cdot a_{III} \cdot (Ap + g4 \cdot Q/32.6), T/год;$

Количество золы, оседающей в газоходах, определяется по формуле:

Gгазоход. = $0.01 \cdot B \cdot \kappa \cdot (Ap + g4 \cdot Q/32.6)$, т/год;

Количество золы, оседающей в золоуловителе, определяется по формуле:

Gзолоулов. = $0.01 \cdot B \cdot (1 - a \coprod - \kappa) \cdot (Ap + g \cdot Q/32.6) \cdot n$, т/год;

где: В – расход топлива, т/год;

аш – доля золы топлива, превращающегося в шлак, в долях ед., равная 0,89;

Ap - 3ольность топлива, %, 0,6;

g4 – потеря с механической неполнотой сгорания, %, 2;

Q – теплотворная способность топлива, равный 1,6 МДж/кг;

к - доля золы топлива, летучей золы, оседающей на газоходах котла, в долях, 0,01;

n – эффективность очистки в электрофильтре, в долях ед., 1

32,68 - теплота сгорания углерода, МДж/кг.

Количество золы, образующейся от чистки топок, рассчитывается по формуле:

 $G_T = 0.01 \cdot 1656,113 \cdot 0.89 \cdot (0.6 + 2 \cdot 1.6/32.6) = 10.287$ т/год;

Количество золы, оседающей в газоходах, определяется по формуле:

Gгазоход. = $0.01 \cdot 1656,113 \cdot 0.01 \cdot (0.6 + 2 \cdot 1.6/32.6) = 0.116$ т/год;

Количество золы, оседающей в золоуловителе, определяется по формуле:

Gзолоулов. = $0.01 \cdot 1656,113 \cdot (1 - 0.89 - 0.01) \cdot (0.6 + 2 \cdot 1.6/32.6) \cdot 1 = 1.156$ т/год;

Общее количество образуемых отходов: Gotx= Gt + Gгазоход+ Gзолоулов, т/год

Gotx=10,287+0,116+1,156=11,559 т/год

Годовой расход древесного топлива, сжигаемого корьевой котел №7 – 109295 т/год.

Расчет образование отходов от сжигания древесного топлива (корьевой котел №7):

Количество золы, образующейся от чистки топок, рассчитывается по формуле:

$$G_T = 0.01 \cdot B \cdot a_{III} \cdot (Ap + g4 \cdot Q/32.6), т/год;$$

Количество золы, оседающей в газоходах, определяется по формуле:

Gгазоход. =
$$0.01 \cdot B \cdot \kappa \cdot (Ap + g4 \cdot Q/32.6)$$
, т/год;

Количество золы, оседающей в золоуловителе, определяется по формуле:

где: В – расход топлива, т/год;

аш – доля золы топлива, превращающегося в шлак, в долях ед.;

Ap – зольность топлива, %;

g4 – потеря с механической неполнотой сгорания, %;

Q – теплотворная способность топлива, МДж/кг;

к - доля золы топлива, летучей золы, оседающей на газоходах котла, в долях;

n – эффективность очистки в электрофильтре, в долях ед.

32,68 - теплота сгорания углерода, МДж/кг.

Количество золы, образующейся от чистки топок, рассчитывается по формуле:

$$G_T = 0.01 \cdot 109295 \cdot 0.9 \cdot (0.6 + 2 \cdot 10.93/32.6) = 1248,170 \text{ т/год};$$

Количество золы, оседающей в газоходах, определяется по формуле:

Gгазоход. =
$$0.01 \cdot 109295 \cdot 0.01 \cdot (0.6 + 2 \cdot 10.93/32.6) = 13.869 \text{ т/год};$$

Общее количество образуемых отходов: Gotx= Gt + Gгазоход+ Gзолоулов, т/год

Gotx = 1248,170 + 13,869 = 1262,039 т/год

Общее количество отхода составляет: 11,559 т/год + 1262,039 т/год = 1273,598 т/год

1.54 Лом футеровок печей и печного оборудования производства негашеной извести(9 12 145 41 20 4)

Отход образуется в Химкорпусе при проведении капитальных ремонтов известерегенерационных печей. Для обоснования норматива образования отхода согласно п. 8 МУ используется критерий, указывающий на утрату товара потребительских свойств — данные предприятия о выдаче материалов для проведения ремонтных работ. Справочные данные предприятия представлены в Приложении 1 (книга 2, стр. 382).

Ежегодно проводится два капитальных ремонта каждой печи. Перед проведением ремонтных работ проводится зачистка известерегенерационной печи, согласно данным предприятия (Приложение 1, книга 2, стр.370) от зачистки образуется 16,59 т/кап.ремонт; 16,59·6= 99,54 т/год Расчет норматива образования отхода приведен в таблице 4.54.1

Таблица 4.54.1- Результаты расчета

Hov	Годовой расход ки	Годовой расход кирпича при ремонтных работах, т/год					
Цех	2018	2019	2020	отхода, т/год			
Химкорпус	351,488	460,187	313,21	474,502			

1.55 Отходы минерального процесса сортирования целлюлозы при ее производстве (3 06 111 12 39 4)

Отход образуется в Варочном цехе. Согласно п.9 МУ нормативы образования отходов обоснованы расчетным путем с применением расчета по материально-сырьевому балансу. Материально-сырьевой баланс разработан с учетом специфики предприятия, представлен в Приложении 9, книга 2, стр. 790-805.

Справочные данные предприятия представлены в Приложении 1, книга 2, стр.365, 369. В таблице 4.55.1 представлены исходные данные для расчетов.

Таблица 4.55.1 – Исходные данные для расчета

Производимая продукция	Ед. измерения	2020
Выработка целлюлозы	т/год	383125

Общее количество отходов, образующихся в сепараторах -0.0003 т на 1 т целлюлозы Общее количество отходов, образующихся в камнеловушке -0.0003 т на 1 т целлюлозы Из общей массы отходов металлических включений -10%; песка и камней -90%.

Расчет образования отход представлен в таблице 4.55.2.

Таблица 4.55.2 – Расчет образующихся отходов

	Ед. измерения	2020
Количество отходов из сепараторов	т/год	114,938
Количество отходов из камнеловушки	т/год	114,938
Всего отходов	т/год	229,875
из них камней и песка, 90%	т/год	206,888
из них металла, 10%	т/год	11,494

Результаты расчета нормативов образования отходов представлены в сводной таблице 4.55.3.

Таблица 4.55.3 – Сводная таблица

Наименование отхода	Норматив образования отхода, т/год			
Отходы минеральные процесса сортирования целлюлозы при ее производстве	206,888			
Лом и отходы стальные несортированные	11,494			

1.56 Светильники со светодиодными элементами в сборе, утратившие потребительские свойства (4 82 427 11 52 4)

Для обоснования норматива образования отхода согласно п. 8 МУ используются сведения о сроке службы светодиодных ламп, в зависимости от их марки. Расчет норматива образования отхода произведен согласно Сборнику методик по расчёту объёмов образования отходов. С.-Пб, 2004. Справочные данные предприятия представлены в Приложении 1 (книга 2, стр. 365-367).

Расчет норматива образования отхода светодиодных светильников производится по формуле:

$$M = \sum ni \cdot mi \cdot ti \cdot 10^{-6} / ki, т/год$$

где: ni – количество установленных ламп i-той марки, шт.;

ti – фактическое количество часов работы ламп i-той марки, час/год;

ki – эксплуатационный срок службы ламп i-той марки лампы, час;

mi – вес одной лампы, г.

Результаты расчета представлены в таблице 4.56.1.

Таблица 4.56.1 - Результаты расчета

-	астица пес	i respublication pare	1010				
			Кол-во уста-	Экспл. срок	Вес одной	Факт.	Норматив об-
	Цех/участок	Марка	новленных	службы, час	лампы, г.	время работы,	разования от-
			ламп, шт.	wij mobi, ac	Jiamili bi, i.	час/год	хода, т/год

Заводо- управление	ДСО-45вт 4000К 4500Лм IP20	100	100000	580	1992	0,001
РСУ	IS-36C	11	50000	2350	1992	0,001
	ДКУ-110Вт 4250К IP66	4	100000	7600	8280	0,003
ТЭЦ-1	ДВО-39Вт IP30 4000 К 3500 Лм микро- призма Соты	10	50000	3400	8280	0,006
	ДСО 05-24-50-Д	110	100000	1300	8280	0,012
	ISK 50-03-C-01	12	50000	4660	8280	0,009
	ISK 27-05-C-01 Ho- вый Свет 230020	10	50000	3800	8280	0,006
	ДКУ-110Вт 4250К IP66	11	100000	7600	8280	0,007
	ДСО-45вт 4000К 4500Лм IP20	12	50000	580	8280	0,001
Бумажная фабрика	PFL-S2-SMD-300Вт IP65 мат. стекло Jazzway	8	40000	10000	8280	0,017
	ДВО-40вт 595х595х40 6500К 4200Лм призма IP40, IEK,	72	100000	16800	8280	0,100
ЦРТМ	ДВО-40вт 595х595х40 6500К 4200Лм призма IP40, IEK,	39	100000	16800	8280	0,054

1.57 Спецодежда из хлопчатобумажного и смешанных волокон, утратившая потребительские свойства, незагрязненная (4 02 110 01 62 4)

Для обоснования норматива образования отхода согласно данным п. 7 МУ за расчетную единицу принята единица человек — количество сотрудников, которых предприятие обеспечивает спецодеждой. Справочные данные предприятия представлены в Приложении 1 (книга 2, стр. 385-388). Расчет норматива образования отхода произведен согласно Методическим рекомендациям

		Норма	Кол-во	Норма-	Масса но-	Норматив об-
Цех	Вид изделия	выдачи	В	тив. срок	вой ед. о,	разования от-
		на чело- века	носке, шт.	носки, мес.	КГ	хода, т/год
ЛПП	Куртка СПЕЦ ут зел-сер	1	8	24	1,6	0,006
711111	Костюм БАЙКАЛ-1 зел сме-	_				,
	совая	1	216	12	1,358	0,270
	Костюм АЛТАЙ ут зел	1	216	24	3,546	0,352
	Жилет СИГНАЛЬНЫЙ	1	216	24	0,2	0,020
	Плащ влагостойкий РЕДУТ	1	216	24	0,65	0,065
	Рукавицы G18 бел (ЗК)	1	216	1	0,073	0,174
	Перчатки ЛАТЕКО ДУАЛ	6	1296	12	0,059	0,070
	Перчатки АЛЕУТЫ ут т-сермел	1	216	18	0,05	0,007
	Перчатки 3 ВС 13 трикотаж	1	216	1	0,022	0,052
Варочный цех	Костюм БАЙКАЛ-1 зел смесовая	1	49	12	1,358	0,061
цех	Костюм АЛТАЙ ут зел	1	49	24	3,546	0,080
	Жилет СИГНАЛЬНЫЙ	1	49	24	0,2	0,005
	Плащ влагостойкий РЕДУТ	1	49	24	0,65	0,015
	Рукавицы G18 бел (ЗК)	1	49	1	0,073	0,039
	Перчатки ЛАТЕКО ДУАЛ	6	294	12	0,059	0,016
	Перчатки АЛЕУТЫ ут т-сермел	1	49	18	0,05	0,002
	Перчатки 3 ВС 13 трикотаж	1	49	1	0,022	0,012
Химкорпус	Костюм БАЙКАЛ-1 зел сме-	-		-		
Zimikopiiye	совая	1	97	12	1,358	0,121
	Костюм АЛТАЙ ут зел	1	97	24	3,546	0,158
	Жилет СИГНАЛЬНЫЙ	1	97	24	0,2	0,009
	Плащ влагостойкий РЕДУТ	1	97	24	0,65	0,029
	Рукавицы G18 бел (ЗК)	1	97	1	0,073	0,078
	Перчатки ЛАТЕКО ДУАЛ	6	582	12	0,059	0,032
	Перчатки АЛЕУТЫ ут т-сермел	1	97	18	0,05	0,003
	Перчатки 3 ВС 13 трикотаж	1	97	1	0,022	0,024
ЦРТМ	Костюм ВИТЯЗЬ зел-сер	1	1	12	0,95	0,001
7	Куртка СПЕЦ ут зел-сер	1	1	24	1,6	0,001
	Перчатки ЛАТЕКО ДУАЛ	6	6	12	0,059	0,000
	Костюм БАЙКАЛ-1 зел сме-					
	совая	1	57	12	1,358	0,071
	Костюм АЛТАЙ ут зел	1	57	24	3,546	0,093
	Жилет СИГНАЛЬНЫЙ	1	57	24	0,2	0,005
	Плащ влагостойкий РЕДУТ	1	57	24	0,65	0,017
	Рукавицы G18 бел (ЗК)	1	57	1	0,073	0,046
	Перчатки ЛАТЕКО ДУАЛ	6	342	12	0,059	0,019
	Перчатки АЛЕУТЫ ут т-сермел	1	57	18	0,05	0,002
	Перчатки 3 ВС 13 трикотаж	1	57	1	0,022	0,014
ТЭС-2	Костюм БАЙКАЛ-1 зел сме-	1	83	12	1,358	0,104
	СОВАЯ	1	02	24	2.546	0.125
	Костюм АЛТАЙ ут зел Жилет СИГНАЛЬНЫЙ	1	83 83	24 24	3,546 0,2	0,135 0,008
	Плащ влагостойкий РЕДУТ	1	83	24	0,65	0,008
	Рукавицы G18 бел (ЗК)	1	83	1	0,03	0,023
	Перчатки ЛАТЕКО ДУАЛ	6	498	12	0,073	0,087
	Перчатки АЛЕУТЫ ут т-сер-	0				
	мел	1	83	18	0,05	0,003
	Перчатки 3 ВС 13 трикотаж	1	83	1	0,022	0,020
Бумажная	Костюм ВИТЯЗЬ зел-сер	1	21	12	0,95	0,018
фабрика	Куртка СПЕЦ ут зел-сер	1	21	24	1,6	0,015
	Перчатки ЛАТЕКО ДУАЛ	6	126	12	0,059	0,007
	Куртка СПЕЦ ут зел-сер	1	6	24	1,6	0,004
	Костюм БАЙКАЛ-1 зел сме-	1	247	12	1,358	0,309
	совая					-
	Костюм АЛТАЙ ут зел Жилет СИГНАЛЬНЫЙ	1	247	24	3,546	0,403
		1	247 247	24 24	0,2 0,65	0,023 0,074
	Плащ влагостойкий РЕДУТ	1			11 / 4 4	

	D 010.5 (DIS)	1	2.47	1	0.072	0.100
	Рукавицы G18 бел (ЗК)	1	247	1	0,073	0,199
	Перчатки ЛАТЕКО ДУАЛ	6	1482	12	0,059	0,080
	Перчатки АЛЕУТЫ ут т-сермел	1	247	18	0,05	0,008
	Перчатки 3 ВС 13 трикотаж	1	247	1	0,022	0,060
ТЭЦ-1	Костюм ВИТЯЗЬ зел-сер	1	5	12	0,95	0,004
,	Куртка СПЕЦ ут зел-сер	1	5	24	1,6	0,004
	Перчатки ЛАТЕКО ДУАЛ	6	30	12	0,059	0,002
	Куртка СПЕЦ ут зел-сер	1	1	24	1,6	0,001
	Костюм БАЙКАЛ-1 зел сме-	1	194	12	1,358	0,242
	совая				·	
	Костюм АЛТАЙ ут зел	1	194	24	3,546	0,316
	Жилет СИГНАЛЬНЫЙ	1	194	24	0,2	0,018
	Плащ влагостойкий РЕДУТ	1	194	24	0,65	0,058
	Рукавицы G18 бел (ЗК)	1	194	1	0,073	0,156
	Перчатки ЛАТЕКО ДУАЛ	6	1164	12	0,059	0,063
	Перчатки АЛЕУТЫ ут т-сер- мел	1	194	18	0,05	0,006
	Перчатки 3 ВС 13 трикотаж	1	194	1	0,022	0,047
XBO	Костюм БАЙКАЛ-1 зел сме-					
Abo	совая	1	31	12	1,358	0,039
	Костюм АЛТАЙ ут зел	1	31	24	3,546	0,051
	Жилет СИГНАЛЬНЫЙ	1	31	24	0,2	0,003
	Плащ влагостойкий РЕДУТ	1	31	24	0,65	0,009
	Рукавицы G18 бел (ЗК)	1	31	1	0,073	0,025
	Перчатки ЛАТЕКО ДУАЛ	6	186	12	0,059	0,010
	Перчатки АЛЕУТЫ ут т-сер- мел	1	31	18	0,05	0,001
	Перчатки 3 ВС 13 трикотаж	1	31	1	0,022	0,008
АТЦ	Костюм ВИТЯЗЬ зел-сер	1	1	12	0,022	0,000
АІЦ	Куртка СПЕЦ ут зел-сер	1	1	24	1,6	0,001
		6	6	12		· ·
	Перчатки ЛАТЕКО ДУАЛ	0	0	12	0,059	0,000
	Костюм БАЙКАЛ-1 зел смесовая	1	53	12	1,358	0,066
	Костюм АЛТАЙ ут зел	1	53	24	3,546	0,086
	Жилет СИГНАЛЬНЫЙ	1	53	24	0,2	0,005
	Плащ влагостойкий РЕДУТ	1	53	24	0,65	0,016
	Рукавицы G18 бел (ЗК)	1	53	1	0,073	0,043
	Перчатки ЛАТЕКО ДУАЛ	6	318	12	0,059	0,017
	Перчатки АЛЕУТЫ ут т-сер- мел	1	53	18	0,05	0,002
	Перчатки 3 ВС 13 трикотаж	1	53	1	0,022	0,013
жпи	*	<u> </u>	1	12	0,022	0,013
ждц	Костюм ВИТЯЗЬ зел-сер		1			- ,
	Куртка СПЕЦ ут зел-сер	1	1	24	1,6	0,001
	Перчатки ЛАТЕКО ДУАЛ	6	6	12	0,059	0,000
	Куртка СПЕЦ ут зел-сер	1	4	24	1,6	0,003
	Костюм БАЙКАЛ-1 зел смесовая	1	58	12	1,358	0,072
	Костюм АЛТАЙ ут зел	1	58	24	3,546	0,095
	Жилет СИГНАЛЬНЫЙ	1	58	24	0,2	0,005
	Плащ влагостойкий РЕДУТ	1	58	24	0,65	0,017
	Рукавицы G18 бел (3K)	1	58	1	0,073	0,047
	Перчатки ЛАТЕКО ДУАЛ	6	348	12	0,059	0,019
	Перчатки АЛЕУТЫ ут т-сер-					
	мел	1	58	18	0,05	0,002
	Перчатки 3 ВС 13 трикотаж	1	58	1	0,022	0,014
Склад ГСМ	Костюм БАЙКАЛ-1 зел смесовая	1	14	12	1,358	0,017
	Костюм АЛТАЙ ут зел	1	14	24	3,546	0,023
	Жилет СИГНАЛЬНЫЙ	1	14	24	0,2	0,001
	Плащ влагостойкий РЕДУТ	1	14	24	0,65	0,004
	Рукавицы G18 бел (ЗК)	1	14	1	0,03	0,011
	Перчатки ЛАТЕКО ДУАЛ	6	84	12	0,073	0,005
	порчики литеко дзил	U		14	0,039	0,003

1	Перчатки АЛЕУТЫ ут т-сер-	1	14	18	0,05	0,000
	мел Перчатки 3 ВС 13 трикотаж	1	14	1	0,022	0,003
РМЦ	Костюм БАЙКАЛ-1 зел сме-					
,	совая	1	27	12	1,358	0,034
	Костюм АЛТАЙ ут зел	1	27	24	3,546	0,044
	Жилет СИГНАЛЬНЫЙ	1	27	24	0,2	0,002
	Плащ влагостойкий РЕДУТ	1	27	24	0,65	0,008
	Рукавицы G18 бел (ЗК)	1	27	1	0,073	0,022
	Перчатки ЛАТЕКО ДУАЛ	6	162	12	0,059	0,009
	Перчатки АЛЕУТЫ ут т-сер- мел	1	27	18	0,05	0,001
	Перчатки 3 ВС 13 трикотаж	1	27	1	0,022	0,007
РСУ	Костюм ВИТЯЗЬ зел-сер	1	4	12	0,95	0,003
	Куртка СПЕЦ ут зел-сер	1	4	24	1,6	0,003
	Перчатки ЛАТЕКО ДУАЛ	6	24	12	0,059	0,001
	Куртка СПЕЦ ут зел-сер	1	4	24	1,6	0,003
	Костюм БАЙКАЛ-1 зел смесовая	1	15	12	1,358	0,019
	Костюм АЛТАЙ ут зел	1	15	24	3,546	0,024
	Жилет СИГНАЛЬНЫЙ	1	15	24	0,2	0,001
	Плащ влагостойкий РЕДУТ	1	15	24	0,65	0,004
	Рукавицы G18 бел (ЗК)	1	15	1	0,073	0,012
	Перчатки ЛАТЕКО ДУАЛ	6	90	12	0,059	0,005
	Перчатки АЛЕУТЫ ут т-сермел	1	15	18	0,05	0,000
	Перчатки 3 ВС 13 трикотаж	1	15	1	0,022	0,004
ЦРО	Костюм БАЙКАЛ-1 зел сме-	1	40	12	1,358	0,050
	Совая	1	40	24		
	Костюм АЛТАЙ ут зел Жилет СИГНАЛЬНЫЙ	1	40	24	3,546 0,2	0,065 0,004
	Плащ влагостойкий РЕДУТ	1	40	24	0,65	0,004
	Рукавицы G18 бел (ЗК)	1	40	1	0,073	0,012
	Перчатки ЛАТЕКО ДУАЛ	6	240	12	0,073	0,032
	Перчатки АЛЕУТЫ ут т-сер-	1	40	18	0,039	0,013
	мел					-
	Перчатки 3 ВС 13 трикотаж	1	40	1	0,022	0,010
КИПиА	Костюм ВИТЯЗЬ зел-сер	l	23	12	0,95	0,020
	Куртка СПЕЦ ут зел-сер	1	23	24	1,6	0,017
	Перчатки ЛАТЕКО ДУАЛ	6	138	12	0,059	0,007
	Костюм БАЙКАЛ-1 зел смесовая	1	35	12	1,358	0,044
	Костюм АЛТАЙ ут зел	1	35	24	3,546	0,057
	Жилет СИГНАЛЬНЫЙ	1	35	24	0,2	0,003
	Плащ влагостойкий РЕДУТ	1	35	24	0,65	0,010
	Рукавицы G18 бел (ЗК)	1	35	1	0,073	0,028
	Перчатки ЛАТЕКО ДУАЛ	6	210	12	0,059	0,011
	Перчатки АЛЕУТЫ ут т-сер- мел	1	35	18	0,05	0,001
	Перчатки 3 ВС 13 трикотаж	1	35	1	0,022	0,009
ЦГП	Костюм ВИТЯЗЬ зел-сер	1	2	12	0,95	0,002
,	Куртка СПЕЦ ут зел-сер	1	2	24	1,6	0,001
	Перчатки ЛАТЕКО ДУАЛ	6	12	12	0,059	0,001
	Куртка СПЕЦ ут зел-сер	1	40	24	1,6	0,029
	Костюм БАЙКАЛ-1 зел смесовая	1	93	12	1,358	0,116
	Костюм АЛТАЙ ут зел	1	93	24	3,546	0,152
	Жилет СИГНАЛЬНЫЙ	1	93	24	0,2	0,009
	Плащ влагостойкий РЕДУТ	1	93	24	0,65	0,009
	Рукавицы G18 бел (ЗК)	1	93	1	0,073	0,075
	Перчатки ЛАТЕКО ДУАЛ	6	558	12	0,059	0,030
	Перчатки АЛЕУТЫ ут т-сер-	1	93	18	0,05	0,003
	мел Перчатки 3 ВС 13 трикотаж	1	93	1	0,022	0,023

СКК	Костюм ВИТЯЗЬ зел-сер)	1	6	12	0,95	0,005
CKK	Куртка СПЕЦ ут зел-сер	1	6	24	1,6	0,003
	Перчатки ЛАТЕКО ДУАЛ	6	36	12	0,059	0,002
	Куртка СПЕЦ ут зел-сер	1	38	24	1,6	0,028
	Костюм БАЙКАЛ-1 зел сме-					-
	совая	1	48	12	1,358	0,060
	Костюм АЛТАЙ ут зел	1	48	24	3,546	0,078
	Жилет СИГНАЛЬНЫЙ	1	48	24	0,2	0,004
	Плащ влагостойкий РЕДУТ	1	48	24	0,65	0,014
	Рукавицы G18 бел (ЗК)	1	48	1	0,073	0,039
	Перчатки ЛАТЕКО ДУАЛ	6	288	12	0,059	0,016
	Перчатки АЛЕУТЫ ут т-сер- мел	1	48	18	0,05	0,001
	Перчатки 3 ВС 13 трикотаж	1	48	1	0,022	0,012
СПЛ	Костюм ВИТЯЗЬ зел-сер	1	3	12	0,95	0,003
	Куртка СПЕЦ ут зел-сер	1	3	24	1,6	0,002
	Перчатки ЛАТЕКО ДУАЛ	6	18	12	0,059	0,001
	Костюм БАЙКАЛ-1 зел смесовая	1	10	12	1,358	0,012
	Костюм АЛТАЙ ут зел	1	10	24	3,546	0,016
	Жилет СИГНАЛЬНЫЙ	1	10	24	0,2	0,001
	Плащ влагостойкий РЕДУТ	1	10	24	0,65	0,003
	Рукавицы G18 бел (ЗК)	1	10	1	0,073	0,008
	Перчатки ЛАТЕКО ДУАЛ	6	60	12	0,059	0,003
	Перчатки АЛЕУТЫ ут т-сермел	1	10	18	0,05	0,000
	Перчатки 3 ВС 13 трикотаж	1	10	1	0,022	0,002
Заводо-	Костюм ВИТЯЗЬ зел-сер	1	32	12	0,95	0,028
управление	Куртка СПЕЦ ут зел-сер	1	32	24	1,6	0,024
	Перчатки ЛАТЕКО ДУАЛ	6	192	12	0,059	0,010
	Куртка СПЕЦ ут зел-сер	1	166	24	1,6	0,122
	Костюм БАЙКАЛ-1 зел смесовая	1	4	12	1,358	0,005
	Костюм АЛТАЙ ут зел	1	4	24	3,546	0,007
	Жилет СИГНАЛЬНЫЙ	1	4	24	0,2	0,000
	Плащ влагостойкий РЕДУТ	1	4	24	0,65	0,001
	Рукавицы G18 бел (ЗК)	1	4	1	0,073	0,003
	Перчатки ЛАТЕКО ДУАЛ	6	24	12	0,059	0,001
	Перчатки АЛЕУТЫ ут т-сермел	1	4	18	0,05	0,000
	Перчатки 3 ВС 13 трикотаж	1	4	1	0,022	0,001
Вневед.	Костюм ВИТЯЗЬ зел-сер	1	5	12	0,95	0,004
охрана	Куртка СПЕЦ ут зел-сер	1	5	24	1,6	0,004
СБО	Костюм ВИТЯЗЬ зел-сер	1	3	12	0,95	0,003
	Куртка СПЕЦ ут зел-сер	1	3	24	1,6	0,002
	Перчатки ЛАТЕКО ДУАЛ	6	18	12	0,059	0,001
	Куртка СПЕЦ ут зел-сер	1	18	24	1,6	0,013
	Костюм БАЙКАЛ-1 зел смесовая	1	62	12	1,358	0,077
	Костюм АЛТАЙ ут зел	1	62	24	3,546	0,101
	Жилет СИГНАЛЬНЫЙ	1	62	24	0,2	0,006
	Плащ влагостойкий РЕДУТ	1	62	24	0,65	0,019
	Рукавицы G18 бел (ЗК)	1	62	1	0,073	0,050
	Перчатки ЛАТЕКО ДУАЛ	6	372	12	0,059	0,020
	Перчатки АЛЕУТЫ ут т-сермел	1	62	18	0,05	0,002
	Перчатки 3 ВС 13 трикотаж	1	62	1	0,022	0,015
			•	•	Итого:	7,117
	of over of personality of		NIDD O HOTDO	и потроб		

по оценке объемов образования отходов производства и потребления, Москва, 2003, ГУ НИЦПУРО:

Осод = mсод · N · Kизн · Kзагр · 10^{-3}

где: Осод – масса вышедшей из употребления спецодежды, т/год;

теод – масса единицы изделия в исходном состоянии, кг;

Кизн – коэффициент, учитывающий потери массы спецодежды данного вида в процессе эксплуатации, равен 0,8;

Кзагр – коэффициент, учитывающий загрязненность спецодежды данного вида, равен 1,15;

N – количество спецодежды вышедшей из употребления, шт./год, определяется по формуле:

 $N = P\phi/T_H$

где: Рф – количество изделий спецодежды данного вида, находящихся в носке, шт.;

Тн - нормативный срок носки спецодежды данного вида, лет.

Результаты расчета представлены в таблице 4.57.1.

Таблица 4.57.1- Результаты расчета

1.58 Отходы известняка, доломита и мела в виде порошка и пыли малоопасные (2 31 112 03 40 4)

В Химкорпусе из-за просыпи при транспортировании, подготовке и хранении, а также из-за неплотностей оборудования образуется отход, представляющей собой пыль известняка. Норматив образования отхода в соответствии с п. 9 МУ обоснован расчетным путем с применением расчета по материально-сырьевому балансу., представленному в Приложении 9, книга 2, стр. 790-805. Данные предприятия о расходе известнякового камня представлены в Приложении 1, книга 2, стр. 382. Результаты расчета представлены в таблице 4.58.1.

Таблица 4.58.1 – Результаты расчета

	Расход кал	мня известня	ікового, т	ого, т Образование отхода, т			Норма образования
Цех	2018	2019	2020	2018	2019	2020	отхода, кг/ т извест-
	2010	2017	2020	2020 2010		2020	няка
Химкорпус	6 863,790	7 987,950	8 089,600	102,957	119,819	121,344	15

Таблица 4.58.2 – Результаты расчета

Цех	Средний годовой расход	Удел. норматив образования отхода	Норматив образования	
	материала, т/год	кг/т известнякового камня	отхода, т/год	
Химкорпус	7 647,113	15	114,707	

1.59 Отходы (шлам) при очистке сетей, колодцев хозяйственно-бытовой и смешанной канализации

(7 22 800 01 39 4)

Для обоснования норматива образования отхода согласно п. 8 МУ использовались удельные отраслевые нормативы образования отхода согласно данным предприятия (Приложение 1, книга 2, стр. 384). В таблице 4.59.1 представлены исходные данные для расчетов.

Расчет образования отходов при зачистке канализационных колодцев производится по формуле

$$M = H \cdot n \cdot k / 1000$$
, т/год

где: М – норматив образования отхода, тонн/год;

Н – количество канализационных колодцев, подлежащих чистке, шт.;

n – количество зачисток одного колодца в год, раз;

k – вес отхода, извлекаемого из одного колодца, кг.

Таблица 4.59.1 – Исходные данные для расчета

Цех	Количество ко- лодцев, шт.	Количество за- чисток в год	Вес отхода, извлекае- мого из колодца, кг	Норматив образова- ния отхода, т/год
ЛПЦ	3	1	20	0,060
Варочный цех	4	1	20	0,080
Химкорпус	4	1	20	0,080
ЦРТМ	2	1	20	0,040
ТЭС-2	3	1	20	0,060
Бумажная фабрика, ЦПХ, СКК	6	1	20	0,120
ТЭЦ-1, ЦТП	5	1	20	0,100
XBO	3	1	20	0,060
АТЦ, Склад ГСМ и АЗС, мазутное хозяйство	1	1	20	0,020
			Итого:	0,600

1.60 Ткань фильтровальная из полимерных волокон, загрязненная нерастворимыми или малорастворимыми минеральными веществами (4 43 221 91 60 4)

Для обоснования норматива образования отхода согласно п. 8 МУ используются сведения о сроке службы материалов и изделий (нормативы расхода технологических материалов). Копия нормативов расхода технологических материалов представлена в Приложении 1 (книга 2, стр. 368, 407-412). В таблице 4.60.1 представлены результаты расчета.

Таблица 4.60.1 – Результаты расчета

Цех	Наименование	Кол-во, шт.	Дней	Вес одной сетки, т	Норматив образова- ния отходов, т/год
СБО	Сетки	4	360	0,02	0,080
ЛПП	Сетки	4	360	0,02	0,080
				Итого:	0,160

1.61 Осадок механической очистки нефтесодержащих сточных вод, содержащий нефтепродукты в количестве менее 15% (7 23 102 02 39 4)

Отход образуется в цехе ТЭЦ-1 и ЦРТМ при работе локальных очистных сооружений. Для обоснования норматива образования отхода согласно п.8 МУ используются показатели, характеризующие образование отхода – протокол испытаний №45/21-ПСВ от 15.06.2021 года (Т.3–Т.6), (Приложение 1, книга 2, стр.486, 487).

Норматив образования отхода определен в соответствии с Методическими рекомендациями по оценке объемов образования отходов производства и потребления, Москва, 2003, ГУ НИЦПУРО.

Qoc.
$$\Pi = \text{Wi} \cdot (\text{Cbx} - \text{Cbhx}) / (100 - \text{Poc.}) \cdot 10^4, \text{т/год.}$$

где: Оос.п – количество обводненных осадка, т/год;

Wi – количество стоков, поступающих на очистку, т/год;

Свх – концентрация взвешенных веществ в стоках, поступающих на очистку, мг/л;

Свых – концентрация взвешенных веществ в стоках после очистки, мг/л;

Рос. – процент обводненности осадка, %.

Результаты расчета представлены в таблице 4.61.1

Таблица 4.61.1 – Результаты расчета

	Количество стоков	концентрация взв. веществ		Обводненность	Норматив об-
Цех	поступающих на очистку т/год	до очистки	После очистки	осадка, %	разования от- хода, т/год
ТЭЦ-1	75445,5	5	3	40,1	0,252
ЦРТМ	308000	47	11	40,1	18,511
	18,763				

1.62 Упаковка полимерная, загрязненная реагентами для производства целлюлозы (3 06 053 11 51 4)

Для обоснования норматива образования отхода согласно п. 8 МУ используются показатели, характеризующие образование отхода - данные предприятия о расходе химикатов, согласно нормативам расхода химикатов. Копия нормативов расхода химикатов представлена в Приложении 1, книга 2, стр. 399-404. В таблице 4.62.1 представлены результаты расчета.

Таблица 4.62.1- Результаты расчета

Цех	Наименова- ние хими- ката	Расход, кг/т	Выра- ботка	Вес в таре, кг	Масса од- ной упа- ковки, кг	Кол-во упаковок, шт.	Норматив образования отхода, т/год	
		Проз	изводство суль	фатной целлю	лозы, т			
	Пеногаситель	0,14	383 125	1000	70	54	3,755	
Варочный	Диспергатор	0,1	383 125	1000	70	38	2,682	
цех	Ингибитор накипи	0,2	383 125	1000	70	77	5,364	
			Производс	тво бумаги, т				
БДМ№9	Пеногаситель	0,24	381 085	1000	70	91	6,402	
БДМ №10	Пеногаситель	0,14	381 085	1000	70	53	3,735	
БДМ №11	Пеногаситель	0,14	381 085	1000	70	53	3,735	
	Подготовка воды кг/тыс.м ³ химочищ.воды							
		40,5	27772,23	1000	1	1125	1,125	
	•		•		•	Итого:	26,797	

1.63 Осадок (ил) биологической очистки сточных вод целлюлозно-бумажного производства (3 06 851 21 32 5);

1.64 Осадки механическое и биологической очистки сточных вод целлюлозно-бумажного производства и хозяйственно-бытовых сточных вод в смеси обезвоженные (3 06 821 11 39 5) Для обоснования норматива образования отхода согласно п. 8 МУ использовались удельные отраслевые нормативы образования отхода. Справочные данные предприятия представлены в Приложении 1, книга 2, стр. 368. Годовые данные по станции биологической очистки АО «Сегежский ЦБК» за 2018-2021 год представлены в Приложении 1, книга 2, стр.492-494.

Расчеты нормативов образования отходов произведены согласно Методическим рекомендациям по оценке объемов образования отходов производства и потребления, Москва, 2003, ГУ НИЦПУРО и Н.С. Жмур, Технологические и биохимические процессы очистки сточных вод на сооружениях с аэротенками, Москва, 2003.

Расчет количества осадка, образующегося в результате механической очистки сточных вод, рассчитывается по формуле:

Qioc w = Wi /
$$(100 - Poc) \cdot 10^4$$
, т/год

 $Wi = q w \cdot (Cibx - Cibhx), т/год$

где: Qioc w – количество осадков исходной влажности i –го узла очистных сооружений, т/год;

Wi – количество образующегося в i –том узле осадка в сухой массе, т/год;

q w - oбъем сточных вод, м³/ год;

Сівх – концентрация загрязняющих веществ при поступлении на і –ый узел очистных сооружений, мг/л;

Сівых – концентрация загрязняющих веществ при выпуске с і –го узла очистных сооружений, мг/л; Рос- исходная влажность осадка, %;

Таблица 4.64.1- Исходные данные для расчета

		2018	2019	2020
Сточные воды, поступающие на СБО	\mathbf{M}^3	34669152	34795720	35809000
Концентрация ВВ при поступлении на СБО	мг/л	223	345	323
Концентрация ВВ после механической очистки	мг/л	63	96	84
Кол-во образующегося осадка после механической очистки	т а.с.в.	5547,064	8664,134	8558,351

Ежесуточный прирост активного ила определяется по формуле:

 $P = 0.8 \cdot Ccdp + kg \cdot Len, M\Gamma/Л$

Ccdp – концентрация взвешенных веществ в сточной воде, мг/л;

Len – БПКполн в исходной воде, мг/л;

kg – коэффициент прироста (0,3), %

Таблица 4.64.2- Расчет образования отходов

		2018	2019	2020
Концентрация ВВ после вторичных отстойников , мг/л	мг/л	83,7	109,6	90,2
БПК в осветленных водах после первичных отстойников и преаэратора - усреднителя	мгО2/л	192	267	219
Концентрация ВВ после механической очистки, мг/л	мг/л	63	96	84
Прирост ила, мг/л	мг/л	43,308	73,733	64,381
Прирост ила, т/год	т а.с.в.	1501,452	2565,593	2305,419
Общее количество осадка и ила	т а.с.в.	7048,516	11229,727	10863,770
Без обезвоживания направляется на Илонакопитель*	т а.с.в.	1213,420	1217,850	1253,315
Направляется на обезвоживание	т а.с.в.	5835,096	10011,877	9610,455
Направляется на обезвоживание с учетом влажности	тонн	29322,089	50310,939	48293,745
С учетом концентрации отходов (1,9%), направляемых в илонакопитель, общее количество поступающей смеси в илонакопитель	тонн	63864,227	64097,379	65963,947
Из них 98% воды (декантат) возвращается в голову очистных сооружений	тонн	62586,943	62815,431	64644,668
В илонакопитель направляется:		1277,285	1281,948	1319,279

^{*}По данным предприятия удельное количество избыточного ила, направляемого без обезвоживания на илонакопитель составляет - 0,000035.

Таблица 4.64.3 — Сводная таблица

Наименование отхода	Норматив образования отхода, т/год
Осадок (ил) биологической очистки сточных вод целлюлозно-бумажного производства	1319,279
Осадки механическое и биологической очистки сточных вод целлюлозно- бумажного производства и хозяйственно-бытовых сточных вод в смеси обезвоженные	47406,257

1.65 Осадок сточных вод мойки автомобильного транспорта практически неопасный (9 21 751 12 39 5)

Отход образуется в цехе АТЦ при работе мойки колес. Для обоснования норматива образования отхода согласно п.8 МУ используются показатели, характеризующие образование отхода — протокол испытаний №45/21-ПСВ от 15.06.2021 года (Т1, Т2) и справка об остановке мойки колес. (Приложение 1, книга 2, стр.486-487).

Норматив образования отхода определен в соответствии с Методическими рекомендациями по оценке объемов образования отходов производства и потребления, Москва, 2003, ГУ НИЦПУРО. Мойка работает в тепловое время года — 135 дней в году. В день осуществляется мойка 6 автомобилей, расход воды на мойку одного автомобиля составляет 0,2 м³.

 $Qoc.\pi = Wi \cdot (Cbx - Cbix) / (100 - Poc.) \cdot 10^4, \text{ т/год}$

где: Оос.п – количество обводненных осадка, т/год;

Wi – количество стоков, поступающих на очистку, т/год;

Свх – концентрация взвешенных веществ в стоках, поступающих на очистку, мг/л;

Свых – концентрация взвешенных веществ в стоках после очистки, мг/л;

Рос. – процент обводненности осадка, %.

Протоколы исследования воды представлены в приложении 1.

Таблица 4.65.1 – Расчет объема образования сточных вод

Количество ма- шин в день Расход воды на одну машину, м ³		Расход воды в день	Количество рабо- чих дней	Годовой расход воды, т/год	
6	0,2	1,2	135	162	

Таблица 4.65.2 – Результаты расчета образования отхода

Цех	Количество стоков поступающих на	Концентрация вз мг	,	Обводненность осадка, %	Норматив образо- вания отхода,	
	очистку, т/год	до очистки	после очистки	осадка, 70	т/год	
АТЦ	162	1574	82,9	61	0,619	

1.66 Отходы песчаной загрузки кипящего слоя в смеси с твердыми остатками сжигания кородревесных отходов (7 42 218 31 40 5)

Отход образуется при работе ТЭЦ-1 (МТК-11 и Корьевой котел №7). Для обоснования норматива образования отхода согласно п. 8 МУ используются показатели, характеризующие образование отхода — данные предприятия о расходе кварцевого песка на восполнение его потерь - 6,0 т/сут (0,203 т/т топлива). Справочные данные предприятия представлены в Приложении 1 (книга 2, стр. 367). Годовой расход песка для двух котлов составляет 4380 т. Норматив образования отхода составит 4380·0,203=889,140 т/год

1.67 Зола от сжигания древесного топлива практически неопасная (6 11 900 02 40 5)

Для обоснования норматива образования отхода, согласно п. 7 МУ используется количество сжигаемого топлива. Расчет произведен согласно Методике определения выбросов загрязняющих веществ в атмосферу при сжигании топлива в котлах производительностью менее 30 тонн пара в час или менее 20 Гкал в час.

Справочные данные предприятия представлены в Приложение 1(книга 2, стр. 367).

Отход образуется при работе ТЭЦ-1 (МТК-11).

Расход древесного топлива при работе МТК-11 составляет 305324 т/год.

Количество золы, образующейся от чистки топок, рассчитывается по формуле:

$$G_T = 0.01 \cdot B \cdot a_{III} \cdot (Ap + g4 \cdot Q/32.6), T/год;$$

Количество золы, оседающей в газоходах, определяется по формуле:

Gгазоход. =
$$0.01 \cdot B \cdot \kappa \cdot (Ap + g4 \cdot Q/32.6)$$
, т/год;

Количество золы, оседающей в золоуловителе, определяется по формуле:

Gзолоулов. =
$$0.01 \cdot B \cdot (1 - a \coprod - \kappa) \cdot (Ap + g \cdot Q/32.6) \cdot n$$
, т/год;

где: В – расход топлива, т/год;

аш – доля золы топлива, превращающегося в шлак, в долях ед., равная 0,9;

Ap - 3ольность топлива, %, 0,6;

g4 – потеря с механической неполнотой сгорания, %, 2;

Q – теплотворная способность топлива, равный 10,93 МДж/кг;

к – доля золы топлива, летучей золы, оседающей на газоходах котла, в долях, 0,01;

n – эффективность очистки в электрофильтре, в долях ед., 0,997

32,68 – теплота сгорания углерода, МДж/кг.

Количество золы, образующейся от чистки топок, рассчитывается по формуле:

 $G_T = 0.01 \cdot 305324 \cdot 0.9 \cdot (0.6 + 2 \cdot 10.93/32.6) = 3486.86 \text{ т/год};$

Количество золы, оседающей в газоходах, определяется по формуле:

Gгазоход. = $0.01 \cdot 305324 \cdot 0.01 \cdot (0.6 + 2 \cdot 10.93/32.6) = 38.745$ т/год;

Количество золы, оседающей в золоуловителе, определяется по формуле:

Gзолоулов. = $0.01 \cdot 305324 \cdot (1 - 0.9 - 0.01) \cdot (0.6 + 2 \cdot 10.93/32.6) \cdot 0.997 = 347.64$ т/год;

Общее количество образуемых отходов золы от работы MTK-11: Gotx= Gt + Gгазоход+ Gзолоулов, т/год

Gotx = 3486,86 + 38,745 + 347,64 = 3873,243 т/год

1.68 Горбыль из натуральной чистой древесины (3 05 220 01 21 5);

1.69 Стружка натуральной чистой древесины (3 05 230 02 22 5);

1.70 Пыль древесная от шлифовки натуральной чистой древесины (3 05 311 01 42 4)

Опилки натуральной чистой древесины (3 05 230 01 43 5);

Отходы образуются в цехе РСУ в результате деревообработке для проведения ремонтных работ.

Обоснование норматива образования отхода приведено в соответствии с данными МРО 5-99.

Методика расчета объемов образования отходов. Отходы деревообработки. СПб, 2004, согласно которой при деревообработке количество отходов в кусковой форме (горбыль) составит 22%;

отходов стружки -10%; отходов опилок -7% от объемов обрабатываемой древесины. Справочные

данные предприятия представлены в Приложении 1, книга 2, стр.369.

Количество кусковых отходов древесины, образующихся в процессе деревообработки, определяется по формуле:

$$M\kappa = Q \cdot \rho \cdot C/100$$
, т/год

где: Q – количество обрабатываемой древесины, 2,5 м³/год;

 ρ – плотность древесины, т/м 3 ;

С – количество кусковых отходов древесины от расхода сырья, %.

$$M\kappa = 2.5 \cdot 0.59 \cdot 22 / 100 = 0.325$$
 т/год

Количество опилок определяется по формуле:

$$M\kappa = Q \cdot \rho \cdot C/100$$
, т/год

Количество опилок за исключением пыли, определяется по формуле:

Моп=Q
$$\cdot \rho \cdot C/100 \cdot (1-0.9 \cdot K\pi /100 \cdot (1-h))$$
, т/год

где: Q – количество обрабатываемой древесины, 2,5 м³/год;

 ρ – плотность древесины, т/м³;

С – количество отходов опилок древесины от расхода сырья, %;

Кп – коэффициент содержания пыли при пилении, 34%

$$Mo\pi = 2.5 \cdot 0.59 \cdot 7/100 \cdot (1-0.9 \cdot 34/100 \cdot (1-0.9)) = 0.1 \text{ T/год}$$

Количество отходов пыли составит:

 $Mп.оп = Q \cdot \rho \cdot C/100 - Mon, т/год$

$$M\pi$$
.оп= 2,5 · 0,59 · 7/100 – 0,1 = 0,003 т/год

Количество стружки определяется по формуле:

 $Mct=Q \cdot \rho \cdot C/100$, t/год

Количество стружки за исключением пыли, определяется по формуле:

Мст=Q ·
$$\rho$$
 · C/100 · (1-0,9 · К π /100 · (1-h)), т/год

где: Q – количество обрабатываемой древесины, 2,5 м³/год;

 ρ – плотность древесины, т/м³;

С – количество отходов опилок древесины от расхода сырья, %;

Кп – коэффициент содержания пыли при пилении, 12,5%

$$Mct=2,5 \cdot 0,59 \cdot 10/100 \cdot (1-0,9 \cdot 12,5/100 \cdot (1-0,9)) = 0,146 \text{ т/год}$$

Количество отходов пыли составит:

$$M\pi$$
.cT= $Q \cdot \rho \cdot C/100 - M$ cT, $T/$ год

Мп.ст.=
$$2.5 \cdot 0.59 \cdot 10/100 - 0.146 = 0.002$$
 т/год

Общее количество отходов древесной пыли:

 $M\Pi = M\Pi.o\Pi + M\Pi.cT.$, т/год

 $M\pi = 0.003 + 0.002 = 0.005 \text{ T/год}$

1.71 Бой стекла (3 41 901 01 20 5)

Для обоснования норматива образования отхода боя стекла в цехе РСУ согласно п. 8 МУ принят критерий, указывающий на утрату товара потребительских свойств — данные о годовом расходе стекла при замене остекления на предприятии. Справочные данные предприятия представлены в Приложении 1 (книга 2, стр. 370, 382). Результаты расчета норматива образования отхода в цехе РСУ представлены в таблице 4.72.1.

Таблица 4.72.1- Результаты расчета боя стекла от проведения ремонтных работ

Цех	Годовой расход ма- териала, м ²	Толщина стекла, мм	Вес стекла, кг/м²	Норма образования отхода%	Норматив образова- ния отхода, т/год
РСУ	200,545	4	10	100	2,005

Для обоснования норматива образования отхода согласно п. 8 МУ используется критерий, указывающий на утрату товара потребительских свойств – данные о списании стеклянной посуды в цехе СПЛ и СКК. Справка предприятия о количестве списанной посуды представлена в Приложении 1 (книга 2 стр. 374-376).

Результаты расчета представлены в таблице 4.72.2.

Таблица 4.72.2- Результаты расчета боя стекла от списания разбитой посуды

Цех	Наименование из- делия	Годовой расход, шт.	Вес единицы изделия, кг	Норма образования отхода%	Норматив образо- вания отхода, т/год
СПЛ	Бюретка	5	0,01	100	0,0001
CHII	Колба	249	0,394	100	0,0981

	Пипетка	293	0,01	100	0,0029
	Стакан	134	0,052	100	0,0070
				Итого:	0,108
	Бутыль 10 л	4	2,895	100	0,012
	Бюретка	154	0,01	100	0,002
СКК	Воронка	134	0,1	100	0,013
CKK	Колба	1159	0,394	100	0,457
	Пипетка	258	0,01	100	0,003
	Стакан	489	0,052	100	0,025
				Итого:	0,511

Норматив образования отхода составит: 2,005+0,108+0,511 = 2,625 т/год

1.72 Бой шамотного кирпича (3 42 110 01 20 5)

Отход образуется в ТЭЦ-1 и ТЭС-2 при проведении капитальных ремонтов котлоагрегатов. Для обоснования норматива образования отхода согласно п. 8 МУ используется критерий, указывающий на утрату товара потребительских свойств — данные предприятия о расходе материалов для проведения ремонтных работ (Приложение 1, книга 2, стр. 382). Данные о количестве капитальных ремонтов, произведенных в 2018-2020 г, представлены в Приложении 1, книга 2, стр. 534-541.

Расчет норматива образования отхода приведен в таблице 4.72.1

Таблица 4.72.1- Результаты расчета

Цех	Годовой расх	од кирпича при работах, т/год	п ремонтных	Количество ежегодных капитальных ремонтов,	Норматив образова-
	2018	2019	2020	шт./год	ния отхода т/год
ТЭС-2	18,558	3,331 0 7		7	7,296
ТЭЦ-1	78,508	115,928	2,262	11	65,566
				Итого:	72,862

1.73 Лом кирпичной кладки от сноса и разборки зданий (8 12 201 01 20 5)

Для обоснования норматива образования отхода согласно п. 8 МУ используются показатели, характеризующие образование отхода – ведомости объемов работ по сносу зданий и сооружений, представленные в Приложении 1 (книга 2, стр. 542-546). Норматив образования отхода рассчитан по количеству выполненных работ (услуг), норма образования отхода принята 100% в соответствии Правилами разработки и применения нормативов трудноустранимых потерь и отходов материалов в строительстве РДС-82-202-96. Результаты расчета представлены в таблице 4.73.1.

Таблица 4.73.1- Результаты расчета образования отхода

	Норма	Го	довое образ	ование отход	ta
Объект	образования отхода, %	2022	2023	2024-2028	по 17.01.2029
Здание трансформаторной станции ТП №4	100	316,944	316,944		
Склад известкового камня, галерея подачи извести на печи обжига	100			4,218	0,196
Здание натяжной станции конвейера	100	20,032			
Кирпичная дымовая труба ТЭС-2	100	78,019	78,019	78,019	3,633
Здание цеха глиноземоразводки	100		55,992	55,992	2,608
	Итого:	414,995	450,955	138,229	6,437

1.74 Абразивные круги отработанные, лом отработанных абразивных кругов (4 56 100 01 51 5)

Обоснование норматива образования отхода приведено в соответствии с Методическими рекомендациями по оценке объемов образования отходов производства и потребления, Москва, 2003, ГУ НИЦПУРО, согласно которым образование отхода зависит от степени износа абразивных изделий, при которой они подлежат замене - удельный норматив образования отхода профильных кругов равный 0,7.

Справочные данные предприятия приведены в Приложении 1 (книга 2, стр.391-393).

Расчет произведен по формуле:

Мабр= \sum Ріабр · Сіиз · Ni, т/год

Где: Мабр – масса образующихся кусковых отходов абразивных изделий, т/год;

Ріабр – первоначальная масса абразивных изделий і-го вида, т;

Сіиз – степень износа абразивных изделий, при которой они подлежат замене, доли от 1;

Ni – число абразивных изделий i-того вида;

n- число применяемых видов абразивных изделий.

Результаты расчета представлены в таблице 4.74.1.

Таблица 4.74.1- Результаты расчета

		Xa	рактерист	ики оборудования				C	Норматив образо-
Цех	Наименование	Марка	Кол-во	Диаметр абраз. круга	Время работы, ч/год	Степень	Масса нового круга, кг	Степень из- носа	вания отхода, т/год
	Заточной	332Б	2	400	750	0,95	11,06	0,7	0,015
	Заточной	364	1	450	500	0,95	18,824	0,7	0,013
РМЦ	Заточной	3E634	1	350	500	0,95	5,52	0,7	0,004
	Заточной	332Б79	1	400	500	0,95	11,06	0,7	0,008
Химкор-	Заточной	Визас ВЗ-379-	1	350	400	0,985	5,52	0,7	0,004
пус	Заточной	Визас ВЗ-379	1	350	400	0,985	5,52	0,7	0,004
-	Заточной		1	350	250	0,985	5,52	0,7	0,004
D	Заточной	KR132 2/4 01311/28	1	350	400	0,985	5,52	0,7	0,004
Варочный цех	Заточной	Визас ВЗ-379-	1	350	250	0,985	5,52	0,7	0,004
	Заточной		1	350	250	0	5,52	0,7	0,004
ТЭС-2	Заточной	3Б634	2	400	150	0	11,06	0,7	0,015
	Заточной	B3-379-01	2	325	200	0,985	1,5	0,7	0,002
	Точильно-шлифовальный	B3-379-01	2	350	250	0	5,52	0,7	0,008
ТЭЦ-1	Точильно-шлифовальный		4	280	252	0	1,1	0,7	0,003
,	Точильно-шлифовальный	B3-379-01	2	350	250	0	5,52	0,7	0,008
	Заточной	B3-379- 01	5	350	502	0	5,52	0,7	0,019
	Ножеточильный	ТЧН 21-5	3	200	1688	0	0,825	0,7	0,002
	Заточной		1	350	236	0	11,06	0,7	0,008
ЛПЦ	Заточной	СТчПк22	1	300	858	0	1,75	0,7	0,001
	Заточной		1	350	236	0	5,52	0,7	0,004
ЦРТМ	Заточной	ВизасВ3-379-01	1	350	400	0,985	5,52	0,7	0,004
,	Наждак		1	400	84	0	11,06	0,7	0,008
	Наждак		1	250	84	0	1,582	0,7	0,001
_	Наждак		1	250	84	0	1,582	0,7	0,001
Бумаж-	Наждак		1	250	84		1,582	0,7	0,001
ная фаб-	Шлифовальный		1	400	1764	0	11,06	0,7	0,008
рика	Универсально-заточной	3E642E	1	150	0	0	0,331	0,7	0,0002
	Шлифовальная машина	MPBBG150	1	150	0	0	0,331	0,7	0,0002
	Шлифовальный	ТШ-3	1	400	0	0	11,06	0,7	0,008
АТЦ	Точильно-шлифовальный	ТШ3-2	2	400	920	0	11,06	0,7	0,015
ЖДЦ	Точильно-шлифовальный	ТШ-2	1	300	120	0,985	1,75	0,7	0,001
ЦРО	Заточной	B3-379	2	350	500	0,985	5,52	0,7	0,008
СБО	Заточной	ДВ 643	3	400	376	0,9	11,06	0,7	0,023
-20	1	10-0.0	1		2,0	1 ~,-	11,00	Итого:	0,212

1.75 Лом и отходы стальные несортированные (4 61 200 99 20 5)

Норматив образования отхода обоснован согласно п. 9 МУ расчетным путем с применением метода расчета по фактическим объемам образования отходов (статистическим методом). Копии форм федерального статистического наблюдения № 2-ТП (отходы) «Сведения об образовании, обработке, утилизации, обезвреживании, размещении отходов производства и потребления» за 2018-2020 года, представлены в Приложении 1, книга 2, стр.547-569. Графики проведения ремонтных работ представлены в Приложении 1, книга 2, стр. 5534-541. Результаты расчета представлены в таблице 4.75.1.

Таблица 4.75.1- Результаты расчета образования отхода

	Кол	ичест	во ре	монт	ных р	абот		Годовое образование отхода, т/год				Образование отхода. т/ремонт						
год	20	18	20	19	20	20	2018	2018 2019 2020		20	18	20)19	2020		Сред.знач.		
вид ре- монта	ТК	КР	ТК	КР	ТК	КР				ТК	КР	ТК	КР	ТК	КР	ТК	КР	
Вароч- ный цех	7	1	12	0	11	1	557,6	1570,1	2112,7	4,9	16,4	6,1	35,7	7,2	211,2	6,1	87,7	
	105	33	246	44	281	9												

Расчет годового образования отхода произведен в соответствии со значением образования отхода на один ремонт. График проведения ремонтных работ на 2021 год представлен в Приложении 1, книга 2, стр.533. Результаты расчета годового образования отхода при в проведении ремонтных работ по подразделениям представлены в таблице 5.75.1.

Таблица 4.75.2 – Расчет образования отхода

	Пла	н про		ия рем бот	онтны	-	L .	вание о	Годовое образование отхода, т/год					
Цех	c 18.01.	2022	2022-	-2028	по 17.01.2		хода, к	ода, кг/ремон		с 18.01.2022 2023-2028 по 1		по 17.	01.2029	
	ТК	КР	ТК	КР	ТК	КР	ТК	КР	ТК	КР	ТК	КР	ТК	КР
Вароч- ный цех	10	1	10	1	5	1	6,1	87,7	60,68	87,70	60,68	87,70	30,340	87,700
РСУ	211	29	211	29	113	15	6,1	87,7	1280,46	2543,30	1280,46	2543,30	685,797	1315,500

Расчет норматива образования лома и отходов стальных несортированных от цеха ЛПЦ представлен в п. 4.27-4.31 и составляет 71,457 т/год.

Расчет норматива образования лома и отходов стальных несортированных от Варочного цеха представлен в п. 4.55 и составляет 11,494 т/год.

Норматив образования отхода составляет: 71,457+11,494+3972,14=**4055,091** т/год

1.76 Остатки и огарки стальных сварочных электродов (9 19 100 01 20 5)

Обоснование норматива образования отхода приведено в соответствии с Методическими рекомендациями по разработке проекта нормативов предельного размещения отходов для теплоэлектростанций, теплоцентралей, промышленных и отопительных котельных. Санкт-Петербург 1998 г, согласно котором принят удельный норматив образования остатков и огарков стальных электродов равный 0,015 от массы электроды. Справочные данные предприятия приведены в Приложении 1 (книга 2, стр.378-381).

Расчет произведен по формуле:

 $N = (MocT \cdot \alpha) \cdot 0.001$

где: Мост - фактический расход электродов, кг/год;

α - остаток электрода, равный 0,015 от массы электрода.

Расчет норматива образования отхода представлен в таблице 5.76.1.

Таблица 5.76.1- Результаты расчета

Цех	Фактически	ій расход электрод	ов в год, кг	Норматив образования от-
цех	2018	2019	2020	хода, т/год
ЛПЦ	146,4	139,2	39,2	0,002
Химкорпус	844,5	575,9	520,2	0,010
TЭC-2	593	561,7	409	0,008
ЦРТМ	97	36	30	0,001
Бумажная фабрика	358	356,1	143,1	0,004
ТЭЦ-1	553	290,7	111	0,005
АТЦ	76	78	60	0,001
ждц	138	51,5	89	0,001
РМЦ		202,06	477,47	0,003
ЦРО	750,5	539,5	564,1	0,009
СБО	165	143	71	0,002
			Итого:	0,046

1.77 Лом и отходы, содержащие незагрязненные черные металлы в виде изделий, кусков, несортированные (4 61 010 01 20 5)

Для обоснования норматива образования лома и отходов, содержащих незагрязненные черные металлы в цехе АТЦ при ремонте автотранспорта, приведено в соответствии с временными рекомендациями по расчету нормативов образования отходов производства и потребления, Санкт-Петербург, 1998 г и составляет 10%. Количество отходов из черных металлов принято в размере 60% от веса списываемого автомобиля, согласно «ОНТП-01-91. РД 3107938-0176-91. Общесоюзные нормы технологического проектирования предприятий автомобильного транспорта» (утв. Протоколом концерна «Росавтотранс» от 07.08.1991 N 3). За расчетную единицу продукции (работ) для отходов обслуживания транспортных средств (ремонт автотранспортных средств) принята единица расстояния (километр) (согласно п.7 МУ).

Расчет количества черного лома, образующегося при проведении ремонта автотранспорта, производится по формуле:

 $M = \Sigma \text{ ni} \cdot \text{mi} \cdot \text{Li} / \text{Lнi} \cdot \text{kч.м.} / 100, \text{т/год}$

где: ni - количество автомобилей i-той марки, шт.;

ті - масса автомобиля і - ой марки, т;

Li – годовой пробег автомобилей с тормозными колодками i - ой марки, тыс. км;

Lнi- нормативный пробег автомобиля до ремонта, тыс. км;

кч.м. - удельный норматив замены деталей из черных металлов при ремонте, 10%

При списании автотранспортных средств, расчет образования отхода производится в размере 60% от веса списываемого автомобиля. Суммирование производится по всем маркам автомобилей. Справочные данные представлены в Приложении 1, книга 2, стр. 394-397.

Таблица 4.77.1- Результаты расчета норматива образования отхода от обслуживания автотранспорта

No	Тип ТС	Марка ТС	Tex. co-	Кол-	Bec,	Годовой пробег,	Норма про- бега до ре-	_	ив образо- гхода, т/год
п/п		тарки 10	стояние	шт.	КГ	км	монта, км	От ре- монта	От списа- ния
1	Прочие лег- ковые	УАЗ 309	Списание	1	2150	2771	20000	0,030	1,29
2	Прочие лег- ковые	УАЗ 3303 фур- гон	Испр.	1	2110	12600	20000	0,133	
3	Легковой	BA3-21114	Испр.	1	1055	15525	20000	0,082	
4	Легковой	BA3-21114	Списание	1	1055	0	20000	0,000	0,633
5	Прочие лег- ковые	УАЗ 31512	Испр.	1	1590	9472	20000	0,075	
6	Легковой	УАЗ 3303 Фург.пер.8ч.	Испр.	1	1820	6760	20000	0,062	
7	Легковой	УАЗ Патриот	Испр.	1	2050	2503	20000	0,026	
8	Грузовой	УАЗ 390994	Испр.	1	1820	6801	15000	0,083	
9	Грузовой	УАЗ 390994	Испр.	1	1895	2000	15000	0,025	
10	Бортовой	ЗИЛ 431412	Испр.	1	4300	0	15000	0,000	
11	Бортовой	KAMA3 53205	Испр.	1	7080	11197	15000	0,528	
12	Бортовой	ЗИЛ 431410	Испр.	1	4300	17404	15000	0,499	
13	Бортовой	ЗИЛ 431410	Испр.	1	4300	15443	15000	0,443	
14	Бортовой	ЗИЛ 431410	Испр.	1	4300	11209	15000	0,321	
15	Седельный тягач	KAMA3 5410	Испр.	1	7100	15431	15000	0,730	
16	Самосвал	MA3 5551	Испр.	1	8000	0	15000	0,000	
17	Самосвал	MA3 5551	Испр.	1	8000	16025	15000	0,855	
18	Самосвал	MA3 5551	Испр.	1	8000	0	15000	0,000	
19	Самосвал	KAMA3 55111	Испр.	1	9000	11302	15000	0,678	
20	Самосвал	KAMA3 55111	Испр.	1	9000	0	15000	0,000	
21	Самосвал	MA3 551605	Испр.	1	12850	28185	15000	2,415	
22	Самосвал	MA3 551605	Испр.	1	12850	0	15000	0,000	
23	Фургон	ЗИЛ 47410С	Списание	1	3920	0	15000	0,000	1,29
24	Топливоци- стерна	MA3 5337	Испр.	1	7050	0	15000	0,000	
25	Топливоза- правщик	ЗИЛ 131	Списание	1	5500	0	15000	0,000	
26	Автоци- стерна по- жарная	ЗИЛ 131 АЦ-40	Списание	1	5500	0	15000	0,000	0,633
27	Автоци-	АЦ-6.0- 60(43118)46142 0	Испр.	1	11015	1580	15000	0,116	1,29
28	Автобус	ПАЗ 32053-07	Испр.	1	5380	69790	20000	1,877	
29	Автобус	Икарус 256.74	Списание	1	9000	0	20000	0,000	
30	Автобус	Икарус 256.74	Списание	1	9000	277	20000	0,012	0,633
31	Автокран	КАМАЗ 53212 МКАТ-16 г/п 16т	Списание	1	9300	0	15000	0,000	1,29
32	Автокран	МАЗ 5337 КС- 3577 г/п 14тонн	Испр.	1	9300	3574	15000	0,222	
33	Автокран	KC- 55721	Испр.	1	31000	3389	15000	0,700	
34	Пр. автом. со спецкуз.	КО 503 на шасси ГАЗ-53		1	3685	0	15000	0,000	0,633
35	Пр.спец.	KAMA3 53422	Испр.	1	10500	7603	15000	0,532	1,29
36	Пр.спец.	MA3 630305	Испр.	1	11650	22981	15000	1,785	
37	Пр. спец.	ГАЗ 53-14-01	Списание	1	3800	0	15000	0,000	

№			Toy oo	Кол-	Dag	Годовой	Норма про-	_	Норматив образо- вания отхода, т/год		
№ п/п	Тип ТС	Марка ТС	Тех. со- стояние	во шт.	Вес,	пробег, км	бега до ре- монта, км	от ре- монта	От списа- ния		
38	Мастерская	ЗИЛ 131	Списание	1	9500	0	15000	0,000	0,633		
39	Лесовоз	MA3 5516A8- (336)	Испр.	1	14000	12944	15000	1,208	1,29		
40	Прицеп	КЗАП 9370	Списание	1	4900	0	6000	0,000			
41	Прицеп	КЗАП 9370	Списание	1	4900	0	6000	0,000			
42	Прицеп	2-П-5	Списание	1	4900	0	6000	0,000	0,633		
1	Бульдозер	Четра Т 11.02 КБ -1	Испр.	1	19350	0	3000	0,000			
2	Бульдозер	Б-10.1111-1Е	Испр.	1	17339	0	3000	0,000			
3	Погрузчик	Амкодор 342 В	Испр.	1	11700	0	3000	0,000			
4	Трактор ко- лесный	T-40AM	Испр.	1	2465	0	3000	0,000			
5	Трактор ко- лесный	MT3-82	Испр.	1	3760	0	3000	0,000			
6	Трактор ко- лесный	MT3-82.1	Испр.	1	3370	0	3000	0,000			
7	Трактор ко- лесный	MT3-82	Испр.	1	3370	0	3000	0,000			
8	Трактор ко- лесный	MT3-82	Испр.	1	3705	0	3000	0,000			
9	Экскаватор	ЭО 2626	Неиспр.	1	7120	0	10000	0,000	4,272		
10	Погрузчик	TO 28	Испр.	1	12200	5536	1200	5,628			
11	Экскаватор	ЭО 2625	Неиспр.	1	6950	0	10000	0,000	4,17		
12	Экскаватор	K406A1	Испр.	1	9600	20000	10000	1,920			
13	Погрузчик гидравл.	L-34	Испр.	1	17500	20000	3000	11,667			
14	Погрузчик гидравл.	L-34	Испр.	1	17500	20000	3000	11,667			
15	Погрузчик фронталь- ный	Л-34	Испр.	1	18160	20000	3000	12,107			
16	Прицеп трак- торный	1ПТС - 2	Неиспр.	1	600	0	6000	0,000	0,36		
17	Прицеп трак- торный	ПСЕ – Ф-12,5Б	Неиспр.	1	2380	0	6000	0,000	1,428		
18	Прицеп трак- торный	2 ПТС- 4 887Б	Неиспр.	1	1690	0	6000	0,000	1,014		
19	Экскаватор-	VOLVO BL 71 I	Испр.	1	9420	20000	10000	1,884			
	1			I	1 1		Ито	т 115,	Q10		

Норматив образования отхода от Варочного цеха и цеха РСУ обоснован согласно п. 9 МУ расчетным путем с применением метода расчета по фактическим объемам образования отходов (статистическим методом). Копии форм федерального статистического наблюдения № 2-ТП (отходы) «Сведения об образовании, обработке, утилизации, обезвреживании, размещении отходов производства и потребления» за 2018-2020 года, представлены в Приложении 1, книга 2, стр.547-569. Графики проведения ремонтных работ за 2018-2020г, представлены в Приложении 1, книга 2, стр.534-541. Результаты расчета представлены в таблице 4.77.2.

Таблица 4.77.2- Результаты расчета образования отходов на один ремонт

	Кол	ичест	гво ре	монт	ных ра	абот		Годовое образование отхода, т/год				разоі	вание	отход	да, т/ре	емонт	
год	201	18	201	19	202	20	2018	2019	2020	20	18	20	19	20	020	Сред.	знач.
вид ре- монта	ТК	КР	ТК	КР	ТК	КР				ТК	КР	ТК	КР	ТК	КР	ТК	КР
Варочный цех	7	1	12	0	11	1	822,9	536,6	1173,9	7,3	24,2	2,1	12,2	4,0	117,3	4,4	51,2
РСУ	105	33	246	44	281	9											

Расчет годового образования отхода произведен в соответствии с образованием отхода на один ремонт. График проведения ремонтных работ в 2021 году приведен в Приложении 1, книга 2, стр.533. Результаты расчета годового образования отхода при в проведении ремонтных работ по подразделениям представлены в таблице 4.77.3.

Таблица 4.77.3 – Результаты расчета образования отхода

Hav	План проведения ремонтных работ Образование отхода,						1 одовое образование отхода, т/год								
Цех	18.01.	2022	2023-2	2028			2022	2023-2	2028	по 17.01	.2029				
	ТК	КР	ТК	КР	ТК	КР	TK	КР	TK	КР	ТК	КР	ТK	КР	
Вароч- ный цех	10	1	10	1	5	1	4,4	51,2	44,825	51,263	44,825	51,263	22,412	51,263	
РСУ	211	29	211	29	113	15	4,4	51,2	945,798	1486,621	945,798	1486,621	506,518	768,942	

Расчет норматива образования лома и отходов стальных несортированных от цеха ЛПЦ представлен в п. 4.27-4.31 и составляет 11,278 т/год.

Норматив образования отхода составляет: 11,278+115,819+2511,881=**2638,978** т/год

1.78 Стружка черных металлов несортированная незагрязненная (3 61 212 03 22 5)

Обоснование норматива образования отхода приведено в соответствии со Сборником удельных показателей образования отходов производства и потребления, Москва, 1999 год, согласно которому определены удельные показатели образования стружки при обработке металла. Для токарных станков – 20 кг за смену; для фрезерных станков – 48 кг за смену; для карусельных станков – 90 кг за смену; расточных станков – 12 кг на смену.

Справочные данные предприятия приведены в Приложении 1, книга 2, стр. 391-393.

Норматив образования отхода определен по формуле:

$$M = \Sigma gi \cdot k \cdot T \cdot n \cdot 10^{-3}$$
, т/год,

где: gi – удельный показатель образования металлической стружки, кг/см;

k – коэффициент машинного времени, равный отношению времени работы станка в смену к продолжительности смены;

Т – количество рабочих дней;

n – количество смен.

Результаты расчета представлены в таблице 4.78.1.

Таблица 4.78.1- Результаты расчета

·	Характе	ристики оборудо	вания		Время ра-	Удельный показа-	Кол-во раб.	Кол-во	Коэф. ма-	матив образо
Цех	Наименование	Марка	Кол-во, шт.	Время ра- боты, ч/год	боты ч/смена	тель образования стружки, кг/смена	дней	смен	шин. вре- мени	ния отхода, т/год
	Токарный	16B20	3	1675	6,7	20	249	1	0,84	4,188
	Токарный	1M63	7	250	1,0	20	249	1	0,13	0,625
	Токарный	1M64	2	500	2,0	20	249	1	0,25	1,250
	Токарный	1M65	2	500	2,0	20	249	1	0,25	1,250
	Токарный	1A660	1	0	0,0	20	249	1	0,00	0,000
DMII	Токарный	1A670	1	1675	6,7	20	249	1	0,84	4,188
РМЦ	Карусельный	1532	1	850	3,4	90	249	1	0,43	9,563
	Карусельный	KCF320	1	0	0,0	90	249	1	0,00	0,000
	Расточной	2A656	1	850	3,4	12	249	1	0,43	1,275
	Фрезерный	6T13	2	425	1,7	48	249	1	0,21	2,550
	Фрезерный	6P82	2	425	1,7	48	249	1	0,21	2,550
	Сверлильный	2H55	2	800	3,2	48	249	1	0,40	4,800
Химкор-	Сверлильный	1C-132	1	200	0,8	48	249	1	0,10	1,200
пус	Сверлильный	2M112	1	200	0,8	48	249	1	0,10	1,200
	Токарный	SNA 400-1000	1	600	2,4	20	249	1	0,30	1,500
Domorr	Токарный	ДИП-400, 163	1	250	1,0	20	249	1	0,13	0,625
Вароч- ный цех	Сверлильный	6cc0Ra166/54	1	250	1,0	48	249	1	0,13	1,500
ныи цех	Сверлильный	Praktika	1	200	0,8	48	249	1	0,10	1,200
	Сверлильный	Praktika	1	200	0,8	48	249	1	0,10	1,200
	Токарный	16K25	1	400	1,6	20	249	1	0,20	1,000
ТЭС-2	Токарный	1M635	1	250	1,0	20	249	1	0,13	0,625
150-2	Сверлильный	2A135	1	120	0,5	48	249	1	0,06	0,720
	Сверлильный	2M55	1	220	0,9	48	249	1	0,11	1,320
	Токарный	1M-63	1	600	2,4	20	249	1	0,30	1,500
	Сверлильный		1	100	0,4	48	249	1	0,05	0,600
ТЭЦ-1	Сверлильно-фрезерны	N1466	1	100	0,4	48	249	1	0,05	0,600
1 ЭЦ-1	Сверлильный		1	100	0,4	48	249	1	0,05	0,600
	Токарный	1В62Г83Б	1	800	3,2	20	249	1	0,40	2,000
	Сверлильный		3	130	0,5	48	249	1	0,07	0,780

	Характе	ристики оборуд	ования		Время ра-	Удельный показа-	16	10	Коэф. ма-	матив образо
Цех	11	M	Кол-во,	Время ра-	боты	тель образования	Кол-во раб.	Кол-во	шин. вре-	ния отхода,
	Наименование	Марка	шт.	боты, ч/год	ч/смена	стружки, кг/смена	дней	смен	мени	т/год
	Точильно-фрезерный	СФ-16-02	2	250	1,0	48	249	1	0,13	1,500
	Токарный	1A62	1	800	3,2	20	249	1	0,40	2,000
	Сверлильно-фрезерны	СФ16-02	1	200	0,8	48	249	1	0,10	1,200
	Токарный	EU-582	1	800	3,2	20	249	1	0,40	2,000
	Токарно-винторезный	ТВ-320П	1	192	0,8	20	249	1	0,10	0,480
ппп	Сверлильный		1	184	0,7	48	249	1	0,09	1,104
ЛПЦ	Токарно-винторезный		1	750	3,0	20	249	1	0,38	1,875
	Сверлильный		1	184	0,7	48	249	1	0,09	1,104
IIDTM	Токарный	ДИП-400, 163	1	100	0,4	20	249	1	0,05	0,250
ЦРТМ	Сверлильный	6cc0Ra 166/54	1	250	1,0	48	249	1	0,13	1,500
	Токарный	1K62	1	1764	7,1	20	249	1	0,89	4,410
	Сверлильный		1	630	2,5	48	249	1	0,32	3,780
C	Сверлильный		1	630	2,5	48	249	1	0,32	3,780
Бумажная	Токарный	1K62	1	1764	7,1	20	249	1	0,89	4,410
фабрика	Токарный		1	1764	7,1	20	249	1	0,89	4,410
	Сверлильный	JMD-50PFCT	1	0	0,0	48	249	1	0,00	0,000
	Токарно-винторезный	TH 40IOD	1	0	0,0	20	249	1	0,00	0,000
	Токарный	SAMAT 400 S	1	1010	4,1	20	249	1	0,51	2,525
АТЦ	Токарно-винторезный	С-10МБ	1	970	3,9	20	249	1	0,49	2,425
	Сверлильный	2M135	1	1010	4,1	48	249	1	0,51	6,060
ждц	Токарно-винторезный	TB-320	1	354	1,4	20	249	1	0,18	0,885
ждц	Фрезерный	676	1	150	0,6	48	249	1	0,08	0,900
ЦРО	Токарный	СУ582	1	750	3,0	20	249	1	0,38	1,875
	Токарно-винторезный	16K20	1	564	2,3	20	249	1	0,28	1,410
СБО	Токарно-винторезный	1K62	1	188	0,8	20	249	1	0,09	0,470
CDU	Токарно-сверлильный	2н135	2	376	1,5	48	249	1	0,19	2,256
	Фрезерный	6H81	1	188	0,8	48	249	1	0,09	1,128
	•	•	•		•	•	•	•	Итог	104,145

1.79 Тормозные колодки отработанные без накладок асбестовых (9 20 31 001 52 5)

Для обоснования норматива образования отхода согласно данным п. 8 МУ используется критерий, указывающий на утрату товара потребительских свойств — данные предприятия о расходе тормозных колодок при проведении технического обслуживания ж/д транспорта в цехе ЖДЦ. Справочные данные предприятия представлены в Приложении 1, книга 2, стр. 394-397.

Норматив образования отхода рассчитан по формуле:

Ho= Σ Hoi/T, т/год

где: Но –норматив образования отхода, т/год;

Ноі –количество образованного в і-том году отхода, т;

Т – количество лет в рассматриваемом периоде.

Таблица 4.79.1 – Результаты расчета

Расход к	солодок, шт./	год	Вес одной	одовое образ	вование отход	ца, т/год	Норматив об-
2018	2019	2020	колодки, кг	2018	2019	2020	разования от- хода, т/год
230	464	576	14,7	3,381	6,8208	8,4672	6,223

Отход образуется в цехе АТЦ в результате проведения технического обслуживания автотранспортных средств и спецтехники. Для обоснования норматива образования отхода согласно данным п. 7 МУ за расчетную единицу принята единица расстояния – километр. Расчет норматива образования отхода произведен согласно Методическим рекомендациям по оценке объемов образования отходов производства и потребления, Москва, 2003, ГУ НИЦПУРО. За расчетную единицу продукции (работ) для отходов обслуживания транспортных средств (замена тормозных колодок) принята единица расстояния (километр) (согласно п.7 МУ). Справочные данные предприятия представлены в Приложении 1, книга 2, стр. 394-397.

Норматив образования отхода рассчитан по формуле:

Mo.т.к. = Σ Nit.к. ·mit.к. · Кизн · Lit.к. / Hit.к. · 10^{-3} ,

где: Мо.т.к. – масса отработанных тормозных колодок, т;

Niт.к. – количество тормозных колодок i – ой марки на один автомобиль, шт.;

тіт.к. – масса одной колодки і – ой марки, кг;

Кизн — коэффициент, учитывающий истирание колодок в процессе эксплуатации транспорта, Кизн = 0.3;

Lit.к. – годовой пробег автомобилей с тормозными колодками i – ой марки, тыс. км;

Ніт.к. – нормативный пробег для замены колодок і – ой марки, тыс. км.

Результаты расчета норматива образования отхода цеха АТЦ представлены в таблице 4.79.2.

Таблица 4.79.2- Результаты расчета

	•	•	Кол-во ед.	Годовой	Характери	стики фил	ьтров	Нормативный	Норматив об-
№ п/п	Тип ТС	Марка ТС	транспорта,	пробег,	Норматив. пробег,	Кол-во,	Коэф., учит. ис-	пробег до за-	разования от-
			шт.	км/год	км/год/(м/ч)	шт.	тирание колодок	мены колодок	хода, т/год
1	Прочие легковые	УАЗ 309	1	2771	1	1,4	0,3	14000	0,0001
2	Прочие легковые	УАЗ 3303 фургон	1	12600	1	1,4	0,3	14000	0,0004
3	Легковой	BA3-21114	1	15525	1	1,4	0,3	14000	0,0005
4	Легковой	BA3-21114	1	0	1	1,4	0,3	14000	0,0000
5	Прочие легковые	УАЗ 31512	1	9472	1	1,4	0,3	14000	0,0003
6	Легковой	УАЗ 3303Фург.8ч.	1	6760	1	1,4	0,3	14000	0,0002
7	Легковой	УАЗ Патриот	1	2503	1	1,4	0,3	14000	0,0001
8	Грузовой	УАЗ 390994	1	6801	1	3,6	0,3	14000	0,0005
9	Грузовой	УАЗ 390994	1	2000	1	3,6	0,3	14000	0,0002
10	Бортовой	ЗИЛ 431412	1	0	1	5,56	0,3	14000	0,0000
11	Бортовой	KAMA3 53205	1	11197	1	5,56	0,3	14000	0,0000
12	Бортовой	ЗИЛ 431410	1	17404	1	5,56	0,3	14000	0,0021
13	Бортовой	ЗИЛ 431410	1	15443	1	5,56	0,3	14000	0,0018
14	Бортовой	ЗИЛ 431410	1	11209	1	5,56	0,3	14000	0,0013
15	Седельный тягач	KAMA3 5410	1	15431	1	19,6	0,3	14000	0,0065
16	Самосвал	MA3 5551	1	0	1	19,94	0,3	14000	0,0000
17	Самосвал	MA3 5551	1	16025	1	19,94	0,3	14000	0,0068
18	Самосвал	MA3 5551	1	0	1	19,94	0,3	14000	0,0000
19	Самосвал	KAMA3 55111	1	11302	1	19,94	0,3	14000	0,0048
20	Самосвал	KAMA3 55111	1	0	1	19,94	0,3	14000	0,000
21	Самосвал	MA3 551605	1	28185	1	19,94	0,3	14000	0,0120
22	Самосвал	MA3 551605	1	0	1	19,94	0,3	14000	0,0000
23	Фургон	ЗИЛ 47410С	1	0	1	25,2	0,3	14000	0,0000
24	Топливоцистерна	MA3 5337	1	0	1	12,6	0,3	14000	0,0000
25	Топливозаправщик	ЗИЛ 131	1	0	1	13,94	0,3	14000	0,0000
26	Автоцистерна пожа ная	ЗИЛ 131 АЦ-40	1	0	1	13,94	0,3	14000	0,0000
27	Автоцистерна пожа ная	АЦ-6.0-60(43118)461420	1	1580	1	13,94	0,3	14000	0,0005
28	Автобус	ПАЗ 32053-07	1	69790	1	7,2	0,3	14000	0,0108
29	Автобус	Икарус 256.74	1	0	1	7,2	0,3	14000	0,0000
30	Автобус	Икарус 256.74	1	277	1	7,2	0,3	14000	0,0000

			Кол-во ед.	Годовой	Характери	стики фил	ьтров	Нормативный	Норматив об-
№ п/п	Тип ТС	Марка ТС	транспорта,	пробег,	Норматив. пробег,	Кол-во,	Коэф., учит. ис-	пробег до за-	разования от-
			шт.	км/год	км/год/(м/ч)	шт.	тирание колодок	мены колодок	хода, т/год
31	Автокран	КАМАЗ 53212 МКАТ-16 г/п 16т	1	0	1	12,6	0,3	14000	0,0000
32	Автокран	MA3 5337 КС-3577 г/п 14т	1	3574	1	12,6	0,3	14000	0,0010
33	Автокран	KC- 55721	1	3389	1	25,2	0,3	14000	0,0018
34	Пр. автом. со спецкуз.	КО 503 на шасси ГАЗ-53	1	0	1	11,4	0,3	14000	0,0000
35	Пр.специализир.	KAMA3 53422	1	7603	1	25,2	0,3	14000	0,0041
36	Пр.специальный	MA3 630305	1	22981	1	14,7	0,3	14000	0,0072
37	Пр.специализир.	ГАЗ 53-14-01	1	0	1	18,7	0,3	14000	0,0000
38	Мастерская	ЗИЛ 131	1	0	1	13,94	0,3	14000	0,0000
39	Лесовоз	MA3 5516A8-(336)	1	12944	1	18,7	0,3	14000	0,0052
40	Прицеп	КЗАП 9370	1	0	0	0	0	0	0,0000
41	Прицеп	КЗАП 9370	1	0	0	0	0	0	0,0000
42	Прицеп	2-П-5	1	0	0	0	0	0	0,0000
1	Бульдозер	Четра T 11.02 КБ -1	1	0	0	0	0	0	0,0000
2	Бульдозер	Б-10.1111-1Е	1	0	0	0	0	0	0,0000
3	Погрузчик	Амкодор 342 В	1	0	1	16,8	0,3	75000	0,0000
4	Трактор колес- ный	T-40AM	1	0	1	16,8	0,3	75000	0,0000
5	Трактор колес- ный	MT3-82	1	0	1	16,8	0,3	75000	0,0000
6	Трактор колес- ный	MT3-82.1	1	0	1	16,8	0,3	75000	0,0000
7	Трактор колес- ный	MT3-82	1	0	1	16,8	0,3	75000	0,0000
8	Трактор колес- ный	MT3-82	1	0	1	16,8	0,3	75000	0,0000
9	Экскаватор	ЭО 2626	1	0	1	19,2	0,3	75000	0,0000
10	Погрузчик	TO 28	1	5536	1	19,2	0,3	75000	0,0004
11	Экскаватор	ЭО 2625	1	0	1	19,2	0,3	75000	0,0000
12	Экскаватор	K406A1	1	20000	1	19,2	0,3	75000	0,0015
13	Погрузчик гид- равл.	L-34	1	20000	1	19,2	0,3	75000	0,0015

			Кол-во ед.	Годовой	Характери	стики фил	ьтров	Нормативный	Норматив об-
№ п/п	Тип ТС	Марка ТС	транспорта, шт.	пробег, км/год	Норматив. пробег, км/год/(м/ч)	Кол-во, шт.	Коэф., учит. ис- тирание колодок	пробег до за- мены колодок	разования от- хода, т/год
14	Погрузчик гидравл.	L-34	1	20000	1	19,2	0,3	75000	0,0015
15	Погрузчик фрон- тальный	Л-34	1	20000	1	19,2	0,3	75000	0,0015
16	Прицеп трактор.	1ПTC – 2	1	0	0	0	0	0	0,0000
17	Прицеп трактор.	ПСЕ – Ф-12,5Б	1	0	0	0	0	0	0,0000
18	Прицеп трактор- ный	2 ПТС- 4 887Б	1	0	0	0	0	0	0,0000
19	Экскаватор-по- грузчик	VOLVO BL 71 B	1	20000	1	19,2	0,3	75000	0,0015
								Итог	0,076

Норматив образования отхода составит: 6,223т+0,076т= **6,299т/год**

1.80 Лом и отходы алюминия несортированные (4 62 200 06 20 5)

Норматив образования отхода обоснован согласно п. 9 МУ расчетным путем с применением метода расчета по фактическим объемам образования отходов (статистическим методом). Копии форм федерального статистического наблюдения № 2-ТП (отходы) «Сведения об образовании, обработке, утилизации, обезвреживании, размещении отходов производства и потребления» за 2018-2020 года, представлены в Приложении 1 (книга 2, стр.547-569). Графики проведения ремонтных работ за 2018-2020г, представлены в Приложении 1, книга 2, стр.534-541. Результаты расчета представлены в таблице 4.80.1.

Таблица 4.80.1- Результаты расчета образования отходов на один ремонт

	олич	ество	ремо	ЭНТНЬ	ых раб	бот		ре обра хода, т	ізовани Угод	Н	орма об	бразов	ания	отхода	, кг/г	ремонт	
год	2018	3	2019)	2020)	2018	2019	2020	2018	8	2019	1	2020		Средне чен	
вид ре- монта	ТК	КР	ТК	КР	ТК	КР				ТК	КР	тк	КР	тк	КР	ТК	КР
Вароч- ный цех	7	1	12	0	11	1	2,7	0	0	0,024	0,079	0	0	0	0	0,008	0,026
РСУ	105	33	246	44	281	9											

Расчет годового образования отхода произведен в соответствии с образованием отхода на один ремонт. График проведения ремонтных работ на 2021 год, приведен в Приложении 1, книга 2, стр.533. Результаты расчета годового образования отхода при в проведении ремонтных работ по подразделениям представлены в таблице 4.80.2.

Таблица 4.80.2 – Результаты расчета образования отхода

	План	прове	едения	і ремонт	ных р	абот	Норм	атив обр.	Го	довое о	бразова	ние отхо	ода, т/го	д						
Цех	18.01	.2022	2023-	2028	по 17	.01.2029		отхода т/ре- монт						• •		.2021	2022-	2025	по 26.0	7.2026
	ТК	КР	ТК	КР	ТК	КР	ТК	КР	ТК	КР	ТК	КР	ТК	КР						
Варочный цех	10	1	10	1	5	1	0,008	0,026	0,080	0,026	0,080	0,026	0,040	0,026						
РСУ	211	29	211	29	113	15	0,008	0,026	1,696	0,768	1,696	0,768	0,908	0,397						

Норматив образования отхода составляет 2,570 т/год.

1.81 Ленты конвейерные, приводные ремни, утратившие потребительские свойства, незагрязненные (4 31 120 01 51 5)

Для обоснования норматива образования отхода согласно п. 8 МУ используются показатели, характеризующие образование отхода — данные предприятия о расходе материалов при проведении ремонтных работ. Справочные данные предприятия представлены в Приложении 1 (книга 2, стр. 383). Удельный вес ленты транспортерной — 50 кг/м² (Приложение 1, книга 2, стр. 370). В таблице 4.81.1 представлены результаты расчета.

Таблица 4.81.1 – Расчет норматива образования отхода

***	Расход	материалов	, м ² /год	Расход	материало	в, т/год	Норматив образования
Цех	2018	2019	2020	2018	2019	2020	отхода, т/год
ЛПЦ	1969,1	3620	340	98,455	181	17	98,818
СБО	-	50	-	-	2,5	-	0,833
Химкорпус	200	-	-	10	-	-	3,333
Варочный цех	200	-	-	10	-	-	3,333
	•	•	•	•	•	Итого:	106,318

В таблице 4.81.2 представлен расчет нормы образования отхода на один ремонт согласно графику ремонтов основного технологического оборудования 2020 г, представленному в Приложении 1 (книга 2, стр.533).

Таблица 4.81.2 – Результаты расчета

Цех	Годовое образование от- хода, т	Количество ремонтов 2020 г	Норма образования отхода, т∖ремонт
ЛПЦ	98,818	48	2,06
СБО	0,833	3	0,28
Химкорпус	3,333	60	0,06
Варочный цех	3,333	12	0,28

1.82 Лом и отходы незагрязненные, содержащие медные сплавы в виде изделий, кусков, несортированные (4 62 100 01 20 5)

Норматив образования отхода обоснован согласно п. 9 МУ расчетным путем с применением метода расчета по фактическим объемам образования отходов (статистическим методом). Копии форм федерального статистического наблюдения № 2-ТП (отходы) «Сведения об образовании, обработке, утилизации, обезвреживании, размещении отходов производства и потребления» за 2018-2020 года, представлены в Приложении 1, книга 2, стр.534-541. Графики проведения ремонтных работ за 2018-2020г, представлены в Приложении 1, книга 2 стр.534-541. Результаты расчета представлены в таблице 4.82.1.

Таблица 4.82.1- Результаты расчета образования отходов на один ремонт

	Кол	ичес	тво р бо		гных ј	pa-	, ,	ое обра тхода,		Норма образования отхода, кг/ремонт							
год	2018	3	2019)	2020)	2018	2019	2020	20	18	20	19	202	0	Средне чен	
вид ре- монта	ТК	КР	ТК	КР	ТК	КР				ТК	КР	ТК	КР	ТК	КР	TK	КР
Варочный цех	7	1	12	0	11	1	0,1	0	0,03	0,893	2,941	0	0	0,103	3	0,9	2
	105	33	246	44	281	9											

Расчет годового образования отхода произведен в соответствии с образованием отхода на один ремонт. График проведение ремонтных работ на 2021 год приведен в Приложении 1, книга 2, стр.533. Результаты

	г	Характер	истика кабе	ЛЯ		Норматив об-
Цех	Год замены	Марка	Длина, м	Кол-во, шт.	Вес, кг/м	разования от- хода, т/год
	2018	Кабель АСБл-6 3х95ож	6,0		4,378	0,026
	2018	Кабель АСБ-6 3х150, м	10,0		5,690	0,057
	2018	Кабель КВВБ 19х1.5, м	560,0		0,838	0,469
	2018	Кабель КВВГ 7х1, м	500,0		0,153	0,077
	2018	Кабель КВВГ 7х1, м	40,0		0,153	0,006
лпц	2019	Кабель ВВГ 1×1,5, м	600,0		0,039	0,023
,	2019	Кабель 25-124330-01R, шт		40	0,300	0,000
	2019	Кабель ВВГ 1×1,5, м	4,0		0,039	0,000
	2019	Кабель 25-124330-01R, шт		2	0,300	0,001
	2019	Кабель КВВГэ 4х0.75, м	30,0		0,089	0,003
	2019	Кабель КГ 2х2,5, м	102,0		0,150	0,015
	2020	Кабель КГтп 4х4-0.66, м	98,0		0,330	0,032
	2018	Кабель 4х185,м	117,5		7,474	0,878
	2018	Кабель JAMAK 4x(2+1)x0.5,	250,0		0,220	0,055
	2018	Кабель ABBГ 5х150, м	100,0		3,150	0,315
	2018	Кабель АВВГнг 1х2,5	200,0		0,037	0,007
	2018	Кабель АКВВГ 14х2,5, м	110,0		0,278	0,031
	2018	Кабель АСБл-6 3х95ож	200,0		4,378	0,876
	2018	Кабель АСБл-6 3х95ож, м	157,5		4,378	0,690
	2018	Кабель ВВГнг 1х1.5, м	15,0		0,039	0,001
	2018	Кабель КВВГэ 4х0.75, м	50,0		0,089	0,004
	2018	Кабель КГ 2х2,5, м	45,0		0,150	0,007
	2018	Провод ПВС 5х2.5, м	21,0		0,253	0,005
	2019	Кабель ВВГ 1×1,5, м	45,0		0,039	0,002
	2019	Кабель 25-124330-01R, шт		3	0,300	0,000
арочный цех	2019	Кабель ВВГ 1×1,5, м	4,0		0,039	0,000
	2019	Кабель 25-124330-01R, шт	2.50.0	2	0,300	0,001
	2019	Кабель JAMAK 4x(2+1)x0.5,	250,0		0,220	0,055
	2019	Кабель АВВГ 5х150, м	1317,5		3,150	4,150
	2019	Кабель АВВГ 5х150, м	54,0		3,150	0,170
	2019	Кабель ВВГнг 1х1.5, м	85,0		0,039	0,003
	2019	Кабель BRCW901A03, шт	150.0	1	0,086	0,000
	2019	Кабель ММО 7х1,5,м	150,0		0,230	0,035
	2019	Провод ПВ-3 1х1,5, м	210,0		0,020	0,004
	2020	Кабель АВВГнг 1х2,5	120,0		0,037	0,004
	2020	Кабель АСБл-6 3х95ож	200,0		4,378	0,876
	2020 2020	Кабель АСБл-6 3х95ож, м	22,5		4,378 0,150	0,099
	2020	Кабель КГ 2х2,5, м Кабель КГтп 4х4-0.66, м	30,0		0,130	0,005 0,099
	2020	Кабель Кг тп 4х4-0.00, м Кабель 4х185 м	300,0		-	0,878
	2018	Кабель JAMAK 4x(2+1)x0.5,	117,5 250,0		7,474 0,220	0,055
	2018	Кабель АВВГ 5х150, м	100,0		3,150	0,033
	2018	Кабель АВВГнг 1х2,5	200,0		0,037	0,007
	2018	Кабель АКВВГ 14х2,5, м	110,0		0,037	0,007
	2018	Кабель АСБл-6 3х95ож	200,0		4,378	0,876
	2018	Кабель АСБл-6 3х95ож, м	157,5		4,378	0,690
	2018	Кабель ВВГнг 1х1.5, м	15,0		0,039	0,090
Химкорпус	2018	Кабель КВВГэ 4х0.75, м	50,0		0,039	0,001
	2018	Кабель КГ 2х2,5, м	45,0		0,089	0,004
	2018	Провод ПВС 5х2.5, м	21,0		0,130	0,007
	2018	Провод ПВС 3х2.3, м Кабель ВВГнг 1х1.5, м	45,0		0,233	0,003
	2019	Кабель 25-124330-01R, шт	⊤ J,U	3	0,300	0,002
	2019	Кабель ВВГнг 1х1.5, м	4,0	3	0,300	0,000
	2019	Кабель 25-124330-01R, шт	τ,∪	2	0,039	0,000
	2019	Кабель JAMAK 4x(2+1)x0.5	250,0	<u> </u>	0,300	0,001
	2013	ACCOUNT STAINITH TA(2 + 1 JAU.)	230,0		0,220	0,023

2019 Ka6ceth ABBI Sx150, N 1317,5 3,150 0,170			T T			I I	
2019 Kagenb BBTwt Ix1.5, м 85,0 0,039 0,003		2019	Кабель АВВГ 5х150, м	1317,5		3,150	4,150
2019 BRCW901A03, mt			·				
2019 Ka6em MMO 7x1,5,м 150,0 0,230 0,035			· ·	85,0			
2019 Пропод ПВ-3 Ix1,5, м 210,0 0,020 0,004			·		1		
2020 Кабель ABBT ir 1x2,5 120,0 0,037 0,004						· ·	
2020 Кабель АСБл-6 3х950ж 20,0 4,378 0,876							
2020 Кабель АСБл-6 3х95ож, м 22,5 4,378 0,099			· ·				
2020 Kабель KT 2x2,5, м 30,0 0,150 0,005							-
2020 Кабель КГтп 4х4-0.66, м 300.0 0,330 0,099			·				
2018 Кабель JAMAK 4x(2+1)x0.5 350.0 0,220 0,077				-			-
2018 Кабель АВВГиг 1х2,5 5273,0 0,037 0,195			-				
2018 Кабель AKBBГЭнг-LS 4x2.5 900,0 0,243 0,219			` '				
2018 Кабель АСБл-6 3х95ож 114,0 4,378 0,499			·				
2018 Кабель КВВГ > 4x0.75, м 300,0 0,089 0,027							
2018 Кабель КГ 2х2,5, м 370,0 0,150 0,056				114,0		4,378	
2018 Кабель МК 10, м 20.0 0,256 0,005			Кабель КВВГэ 4х0.75, м				0,027
TOC-2			Кабель КГ 2х2,5, м	370,0			0,056
ТЭС-2 2019 Kабель BBГ 1×1,5, м 2,0 0,039 0,000							0,005
ТЭС-2 2019 CASCELLASSIC 100 2X0, 160,0 0,035 0,006		2018	Кабель ВВГ 1×1,5, м	450,0		0,039	0,018
TOC-2 2019 Ka6eль 25-124330-01R, IIIT 1 0,300 0,000 0,000		2019	Кабель ВВГ 1×1,5, м	2,0		0,039	0,000
ТЭС-2 2019 Кабель ВВГнг 1х1.5, м 440,0 0,039 0,017		2019	OLFLEX CLASSIC 100 2X0,	160,0		0,035	0,006
2020 Кабель ВВГ 1×1,5, м 550,0 0,039 0,021		2019	Кабель 25-124330-01R, шт		1	0,300	0,000
2020 Кабель JAMAK 4x(2+1)x0.5 350,0 0,220 0,077 2020 кабель NYM 3x2,5,м 1005,0 0,198 0,199 2020 Кабель ABBГ 5x150,м 800,0 3,150 2,520 2020 Кабель ABBГ 5x150,м 258,0 3,150 0,813 2020 Кабель ABBГнг 1x2,5 1390,0 0,037 0,051 2020 Кабель ABBГнг 1x2,5 1390,0 0,037 0,051 2020 Кабель BBГ 1x1,5,м 160,0 0,039 0,006 2020 Кабель BBГ 1x1,5,м 100,0 0,039 0,006 2020 Кабель BBГ 1x1,5,м 100,0 0,039 0,004 2020 Кабель BBГ 1x1,5,м 100,0 0,039 0,008 2020 Кабель BBГ 1x1,5,м 200,0 0,039 0,023 2018 Кабель BBГ 1x1,5,м 200,0 0,039 0,008 2018 Кабель BBГ 1x1,5,м 200,0 0,039 0,008 2019 Кабель BBГ 1x1,5,м 200,0 0,150 0,005 2019 Кабель BBГ 1x1,5,м 50,0 0,150 0,000 2020 Кабель BBГ 1x1,5,м 50,0 0,039 0,002 2018 Кабель BBГ 1x1,5,м 50,0 0,039 0,002 2018 Кабель BBГ 1x1,5,м 50,0 0,039 0,002 2018 Кабель BBГ 1x1,5,м 50,0 0,035 0,001 2018 Кабель BBГ 1x1,5,м 40,0 0,253 0,010 2018 Кабель BBГ 1x1,5,м 40,0 0,253 0,001 2018 Кабель BBГ 1x1,5,м 200,0 0,220 0,024 2018 Кабель BBГ 1x1,5,м 200,0 0,039 0,008 2018 Кабель BBГ 1x1,5,м 200,0 0,039 0,001 2018 Кабель BBГ 1x1,5,м 200,0 0,039 0,001 2018 Кабель BBГ 1x1,5,м 200,0 0,039 0,001 2019 Кабель BBГ 1x1,5,м 540,0 0,039 0,035 2019 Кабель BBГ 1x1,5,м 540,0 0,039 0,001 2019 Кабель BAГ 1x1,5,м 540,0 0,039 0,001 2019 Кабель BAГ 1x1,5,м 540,0 0,039 0,001 2019 Кабель BAГ 1x1,5,м 160,0 0,594 0,095 2019 Кабель JAMAK 4x(2+1)x0.5, 300,0 0,020 0,066	ТЭС-2	2019	Кабель ВВГнг 1х1.5, м	440,0		0,039	0,017
2020		2020	Кабель ВВГ 1×1,5, м	550,0		0,039	0,021
2020 Кабель АВВГ 5х150, м 800,0 3,150 2,520		2020	Кабель JAMAK 4x(2+1)x0.5	350,0		0,220	0,077
2020 Кабель ABBГ 5x150, м 258,0 3,150 0,813		2020	кабель NYM 3x2,5,м	1005,0		0,198	0,199
2020 Кабель АВВГнг 1х2,5 1390,0 0,037 0,051		2020	Кабель АВВГ 5х150, м	800,0		3,150	2,520
2020 Кабель АКВВГЭнг-LS 4x2.5 42.0 0,243 0,010		2020	Кабель АВВГ 5х150, м	258,0		3,150	0,813
2020 Кабель ВВГ 1×1,5, м 160,0 0,039 0,006		2020	Кабель АВВГнг 1х2,5	1390,0		0,037	0,051
Q020 Кабель ВВГнг Ix1.5, м 100,0 0,039 0,004		2020	Кабель АКВВГЭнг-LS 4x2.5	42,0		0,243	0,010
2020 Кабель КВВГэ 4х0.75, м 1300,5 0,089 0,116 2020 Кабель ВВГ 1×1,5, м 600,0 0,039 0,023 ЦРТМ 2018 Кабель ВВГ 1×1,5, м 200,0 0,039 0,008 2018 Кабель ВВГ 1×1,5, м 30,0 0,150 0,005 2019 Кабель ЈАМАК 4х(2+1)х0.5, 1000,0 0,220 0,220 2019 Кабель ВВГ нг 1х1.5, м 50,0 0,039 0,002 2020 Кабель ВВГ нг 1х1.5, м 50,0 0,039 0,002 2018 Провод ПВС 5х2.5, м 40,0 0,253 0,010 2018 ОБЕКХ LASSIC1002X0,5,м 30,0 0,035 0,001 2018 Кабель БАЛАМА 4х(2+1)х0.5, 200,0 0,220 0,044 2018 Кабель КВВГ нг 1,5, м 200,0 0,039 0,008 2018 Кабель ВВГ-П 2х1,5, м 200,0 0,077 0,015 2018 Кабель КВВГ нг 4х1, м 500,0 0,039 0,021 2018 Кабель ВВГ 1×1,5, м 540,0		2020	Кабель ВВГ 1×1,5, м	160,0		0,039	0,006
2020 Кабель ВВГ 1×1,5, м 600,0 0,039 0,023		2020	Кабель ВВГнг 1х1.5, м	100,0		0,039	0,004
ДРТМ 2018 Кабель ВВГ 1×1,5, м 200,0 0,039 0,008		2020	Кабель КВВГэ 4х0.75, м	1300,5		0,089	0,116
ЦРТМ 2018 Кабель КГ 2х2,5, м 30,0 0,150 0,005 2019 Кабель ЈАМАК 4х(2+1)х0.5, 1000,0 0,220 0,220 2019 Кабель ПИТ. 50-16000-220R, 1,0 0,100 0,000 2020 Кабель ВВГнг 1х1.5, м 50,0 0,039 0,002 2018 Провод ПВС 5х2.5, м 40,0 0,253 0,010 2018 ОБГЕХ LASSIC1002X0,5,м 30,0 0,035 0,001 2018 Кабель ЈАМАК 4х(2+1)х0.5, 200,0 0,220 0,044 2018 Кабель КЈААМ, м 100,0 0,220 0,022 2018 Кабель ВВГ 1×1,5, м 200,0 0,039 0,008 2018 Кабель КВВГнг 4х1, м 500,0 0,077 0,015 2018 Кабель КВВГнг 4х1, м 500,0 0,096 0,048 2018 Кабель ВВГ 1×1,5, м 200,0 0,096 0,048 2019 Кабель ВВГ 1×1,5, м 540,0 0,039 0,021 2019 Кабель ВСКВС 100 2X, 399,0 0,035 0,014		2020	Кабель ВВГ 1×1,5, м	600,0		0,039	0,023
ЦРТМ 2019 Кабель ЈАМАК 4x(2+1)x0.5, 1000,0 0,220 0,220 2019 Кабель пит. 50-16000-220R, 1,0 0,100 0,000 2020 Кабель ВВГнг 1x1.5, м 50,0 0,039 0,002 2018 Провод ПВС 5x2.5, м 40,0 0,253 0,010 2018 ОLFLEX LASSIC1002X0,5,м 30,0 0,035 0,001 2018 Кабель ЈАМАК 4x(2+1)x0.5, 200,0 0,220 0,044 2018 Кабель КЈААМ, м 100,0 0,220 0,022 2018 Кабель ВВГ 1×1,5, м 200,0 0,039 0,008 2018 Кабель ВВГ-П 2x1,5, м 200,0 0,077 0,015 2018 Кабель КВВГнг 4x1, м 500,0 0,096 0,048 2018 Кабель ВВГ 1×1,5, м 50,0 0,039 0,021 2018 Кабель ВВГ 1×1,5, м 50,0 0,039 0,021 2019 Кабель ВВГ 1×1,5, м 540,0 0,039 0,021 2019 Кабель Unitronic, м 850,0 0,035 0,014 2019 Кабель ГУМУТУТ 16X1,5, м 160,0 0,594 0,095 2019 Кабел		2018	Кабель ВВГ 1×1,5, м	200,0		0,039	0,008
2019 Кабель пит. 50-16000-220R, 2020 1,0 0,100 0,000 2020 Кабель ВВГнг 1х1.5, м 50,0 0,039 0,002 2018 Провод ПВС 5х2.5, м 40,0 0,253 0,010 2018 ОLFLEX LASSIC1002X0,5,м 30,0 0,035 0,001 2018 Кабель ЈАМАК 4х(2+1)х0.5, 200,0 0,220 0,044 2018 Кабель КЈААМ, м 100,0 0,220 0,022 2018 Кабель ВВГ 1×1,5, м 200,0 0,039 0,008 2018 Кабель ВВГ II 2x1,5, м 200,0 0,077 0,015 2018 Кабель КВВГнг 4x1, м 500,0 0,096 0,048 2018 Кабель ВВГ 1×1,5, м 540,0 0,039 0,021 2019 Кабель ВВГ 1×1,5, м 540,0 0,039 0,021 2019 Кабель Unitronic, м 850,0 0,090 0,077 2019 Кабель БҮМҮТW 16X1,5, м 160,0 0,594 0,095 2019 Кабель ЈАМАК 4x(2+1)x0.5, 300,0 0,020 0,066		2018	Кабель КГ 2х2,5, м	30,0		0,150	0,005
2020 Кабель ВВГнг 1х1.5, м 50,0 0,039 0,002 2018 Провод ПВС 5х2.5, м 40,0 0,253 0,010 2018 ОLFLEX LASSIC1002X0,5,м 30,0 0,035 0,001 2018 Кабель JAMAK 4x(2+1)x0.5, 200,0 0,220 0,044 2018 Кабель КЈААМ, м 100,0 0,220 0,022 2018 Кабель ВВГ 1×1,5, м 200,0 0,039 0,008 2018 Кабель КВВГнг 4x1, м 500,0 0,096 0,048 2018 Кабель КВВГ нг 4x1, м 500,0 0,096 0,048 2018 Кабель ВВГ 1×1,5, м 540,0 0,039 0,021 2019 Кабель Спаког 100 2X , 390,0 0,035 0,014 2019 Кабель Гумүг W 16X1,5, м 160,0 0,594 0,095	ЦРТМ	2019	Кабель JAMAK 4x(2+1)x0.5,	1000,0		0,220	0,220
2018 Провод ПВС 5x2.5, м 40,0 0,253 0,010		2019	Кабель пит. 50-16000-220R,	1,0		0,100	0,000
2018 OLFLEX LASSIC1002X0,5,N 30,0 0,035 0,001		2020	Кабель ВВГнг 1х1.5, м	50,0		0,039	0,002
2018 Кабель ЈАМАК 4x(2+1)x0.5, 200,0 0,220 0,044		2018	Провод ПВС 5х2.5, м	40,0		0,253	0,010
ум.фабрика 2018 Кабель КЈААМ, м 100,0 0,220 0,022		2018	OLFLEX LASSIC1002X0,5,M	30,0		0,035	0,001
ум.фабрика 2018 Кабель ВВГ 1×1,5, м 200,0 0,039 0,008		2018	Кабель JAMAK 4x(2+1)x0.5,	200,0		0,220	0,044
ум.фабрика 2018 Кабель ВВГ-П 2х1,5, м 200,0 0,077 0,015		2018	Кабель КЈААМ, м	100,0		0,220	0,022
ум.фабрика 2018 Кабель КВВГнг 4х1, м 500,0 0,096 0,048		2018	Кабель ВВГ 1×1,5, м	200,0		0,039	0,008
ум.фабрика 2018 Кабель КВВГнг 4х1, м 500,0 0,096 0,048							
ум.фабрика 2018 Кабель 25-124330-01R, шт 2							
ум.фаорика 2019 Кабель ВВГ 1×1,5, м 540,0 0,039 0,021 2019 OLFLEX CLASSIC 100 2X ,: 390,0 0,035 0,014 2019 Кабель Unitronic, м 850,0 0,090 0,077 2019 Кабель FYMYTW 16X1,5, м 160,0 0,594 0,095 2019 Кабель JAMAK 4x(2+1)x0.5, 300,0 0,220 0,066	[, _		·	*	2	· ·	
2019 OLFLEX CLASSIC 100 2X , 390,0 0,035 0,014 2019 Кабель Unitronic, м 850,0 0,090 0,077 2019 Кабель FYMYTW 16X1,5, м 160,0 0,594 0,095 2019 Кабель JAMAK 4x(2+1)x0.5, 300,0 0,220 0,066	ум.фабрика		·	540,0			•
2019 Кабель Unitronic, м 850,0 0,090 0,077 2019 Кабель FYMYTW 16X1,5, м 160,0 0,594 0,095 2019 Кабель JAMAK 4x(2+1)x0.5, 300,0 0,220 0,066							
2019 Кабель FYMYTW 16X1,5, м 160,0 0,594 0,095 2019 Кабель JAMAK 4x(2+1)x0.5, 300,0 0,220 0,066			*				
2019 Кабель JAMAK 4x(2+1)x0.5, 300,0 0,220 0,066			·				
			1 1			· ·	
			` '				•
2019 Кабель NOMAK 2x2x0,5, м 900,0 0,048 0,043						· ·	
2019 Кабель АПвВГ 4х50мк(N)-1, 500,0 1,048 0,524							-

2019 Ka6em. KBBT rxl, m 1200,0 0,153 0,184		2019	Кабель FTP 4x2x0,5, м	12,0		0,011	0,000
2019 Ka6em KBBTm 4x1, x 1500,0 0,096 0,144							, ,
2019 KaGeirs Kl'mi 4x4-0.66, м 560,0 0,330 0,185			·	*		,	· ·
2020 Kafeera BBT 1×1,5, м 70,0 0,039 0,003							*
2020 NESMAK-HF 2x2x0,5+0,5, m 100,0 0,059 0,006 2020 Ka6cin, BBT-mr, m 500,0 0,094 0,047 2018 Ka6cin, BBT-111,5 m 2000,0 0,039 0,029 2018 Ka6cin, BBT-mr, m 500,0 0,039 0,029 2018 Ka6cin, KT 2x2,5, m 90,0 0,150 0,014 2018 Ka6cin, KT 2x2,5, m 90,0 0,150 0,014 2018 Ka6cin, KT 2x2,5, m 90,0 0,039 0,000 2019 Ka6cin, BBT 1x1,5, m 2,0 0,039 0,000 2019 Ka6cin, BBT 1x1,5, m 2,0 0,039 0,000 2019 Ka6cin, BBT in 1x1,5, m 1100,0 0,039 0,000 2019 Ka6cin, KT 2x2,5, m 1440,0 0,150 0,216 2019 Ka6cin, KT 2x2,5, m 1440,0 0,150 0,216 2020 Ka6cin, KBBT 1x1, m 1800,0 0,048 0,009 2020 Ka6cin, KBBT 1x1, m 1800,0 0,048 0,009 2020 Ka6cin, KBBT 1x1, m 1800,0 0,022 0,005 2020 Ka6cin, KBBT 1x1, m 1800,0 0,039 0,012 2020 Ka6cin, KBBT 1x1, m 300,0 0,039 0,012 2018 Ka6cin, KBBT 1x1, m 1310,0 0,039 0,012 2018 Ka6cin, KBBT 1x1, m 1310,0 0,193 0,253 2018 Ka6cin, KBBT 1x1, m 1310,0 0,193 0,253 2018 Ka6cin, KBBT 1x1, m 160,0 0,043 0,054 2018 Thoso, THE-31 to, m 1260,0 0,043 0,054 2018 Thoso, THE-31 to, m 1260,0 0,043 0,054 2019 Ka6cin, KTBR-LS 100,5,m 70,0 0,130 0,013 2019 Ka6cin, KTBR-LS 100,5,m 70,0 0,130 0,003 2019 Ka6cin, KTRBR-LS 100,5,m 70,0 0,130 0,003 2019 Ka6cin, KTRBR-LS 100,5,m 70,0 0,150 0,009 2019 Ka6cin, KTBBT-14,5, m 200,0 0,039 0,008 2020 Ka6cin, BBT 1x1,5, m 200,0 0,039 0,008 2020 Ka6cin, BBT 1x1,5, m 80,0 0,039 0,009 2020 Ka6cin, BBT 1x1,5, m		2020	Кабель ВВГ 1×1,5, м	70,0		0,039	0,003
2020 Ka6elb BBl'Dhir, M 500,0 0,094 0,047							
2018 Ka6enb BH in 1x1.5, м 500,0 0,039 0,020		2020					
2018 Ka6enb BH in 1x1.5, м 500,0 0,039 0,020			-				
2018 Кабель КГ 2х2,5, м 90,0 0,150 0,014		2018					-
2018 Кабель КГ 30х70+1х25, м 2,0 0,039 0,0000		2018	· ·	90,0			· ·
TOHI		2018	* *	300,0			0,903
ТЭЦ-1 2019			-				-
ТЭЦ-1 2019		2019			1		The state of the s
ТЭЦ-1 2019 Кабель КГ 2х.2.5, м 1440,0 0,150 0,216 2019 Провол ПВС 5х.2.5, м 300,0 0,253 0,076 2020 Кабель NOMAK 2х.2х.0,5, м 180,0 0,048 0,009 2020 SENSORFLEX-H 3x0,25 GR 240,0 0,022 0,005 2020 Кабель КВВГ тах.1, м 1800,0 0,153 0,275 2020 Кабель БВГ тах.1, м 500,0 0,096 0,048 2020 Кабель БВГ тах.1, м 500,0 0,039 0,012 2018 Кабель БВГ тах.1, м 300,0 0,039 0,012 2018 Кабель КБВГЭ 10x0.75, м 300,0 2,898 0,869 2018 Кабель КВВГЭ 10x0.75, м 1310,0 0,133 0,054 2018 Провод ПВ-3 1x1,5, м 160,0 0,043 0,054 2018 Провод ПВ-3 1x1,5, м 160,0 0,016 0,043 0,054 2018 Провод ПВ-3 1x5, м 160,0 0,020 0,033 0,015 0,003 2019 Kабель КТ				1100,0			
2019 Провод ПВС 5x2.5, м 300.0 0,253 0,076	ТЭЦ-1					*	
2020 Kабель NOMAK 2x2x0,5, M 180,0 0,048 0,009	,						·
2020 SENSORFLEX-H 3x0,25 GR 240,0 0,022 0,005			-				*
2020 Кабель КВВГ 7х1, м 1800,0 0,153 0,275			1.1				
2020 Кабель КВВГыг 4х1, м 500,0 0,096 0,048			-				-
2020 Кабель JAMAK 4x(2+1)x0.5, 60,0 0,220 0,013 2020 Кабель ВВГнг 1x1.5, м 300,0 0,039 0,012 2018 ААБЛГ-6 3x95 300,0 2,898 0,869 2018 Кабель АСБл-6 3x950ж, м 360,0 4,378 1,576 2018 Кабель КВВГЭ 10x0.75, м 1310,0 0,193 0,253 2018 Провод А-16, м 1260,0 0,043 0,054 2018 Провод ПВ-3 10, м 31,0 0,116 0,004 2018 Провод ПВ-3 1x1,5, м 160,0 0,020 0,003 2019 Кабель КГ 2x2,5, м 60,0 0,150 0,009 2019 Кабель КТВВшт-LS 10x0,5,м 70,0 0,180 0,013 2019 Кабель КТВНит-S 10x0,5,м 70,0 0,180 0,013 2019 Кабель КТВНит-S 10x0,5,м 70,0 0,180 0,013 2019 Кабель КТВНит-S 10x0,5,м 70,0 0,116 0,000 2019 Провод ПВС 5x2,5,м 200,0 0,253 0,051			-				· ·
2020 Кабель ВВГнг 1х1.5, м 300,0 0,039 0,012			·				
2018 AAEJIГ-6 3x95 300,0 2,898 0,869			· /				
2018 Кабель АСБл-6 3х950ж, м 360,0 4,378 1,576							· ·
2018 Кабель КВВГЭ 10х0.75, м 1310,0 0,193 0,253 2018 Провод А-16, м 1260,0 0,043 0,054 2018 Провод ПВ-3 10, м 31,0 0,116 0,004 2018 Провод ПВ-3 1х1,5, м 160,0 0,020 0,003 2019 Кабель КГВВнг-LS 10х0,5,м 70,0 0,180 0,013 2019 Кабель КГТ 4x4-0.66, м 45,0 0,330 0,015 2019 Кабель КГТ 4x4-0.66, м 45,0 0,330 0,015 2019 Кабель КПВ НТ 5,16000-220R, 1,0 0,100 0,000 2019 Провод ПВ-3 10, м 70,0 0,116 0,008 2019 Провод ПВ-3 10, м 70,0 0,116 0,008 2019 Провод ПВ-5 30, м 200,0 0,253 0,051 2020 Кабель БВГ 18, м 200,0 0,594 0,011 2020 Кабель КВВГ 10x0.75, м 258,0 0,193 0,050 2020 Кабель КВВГ 3 4x0.75, м 200,0 0,039 0							,
2018 Провод А-16, м 1260,0 0,043 0,054 2018 Провод ПВ-3 10, м 31,0 0,116 0,004 2018 Провод ПВ-3 1х1,5, м 160,0 0,020 0,003 2019 Кабель КГ 2х2,5, м 60,0 0,150 0,009 2019 Кабель КГВВнг-LS 10x0,5,м 70,0 0,180 0,013 2019 Кабель КГТ 4x4-0.66, м 45,0 0,330 0,015 2019 Кабель Пит. 50-16000-220R, 1,0 0,100 0,000 2019 Провод ПВС 5x2.5, м 200,0 0,116 0,008 2019 Провод ПВС 5x2.5, м 200,0 0,253 0,051 2020 Кабель ТУМҮТW 16X1,5, м 18,0 0,253 0,051 2020 Кабель АБПГ-6 3x95 340,0 2,898 0,985 2020 Кабель КВВГЭ 10x0.75, м 258,0 0,193 0,050 2020 Кабель КВВГЭ 4x0.75, м 500,0 0,089 0,045 2020 Кабель КВБГ 11,5, м 80,0 0,033 <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td>· ·</td></td<>			-				· ·
2018 Провод ПВ-3 10, м 31,0 0,116 0,004 2018 Провод ПВ-3 1х1,5, м 160,0 0,020 0,003 2019 Кабель КГ 2х2,5, м 60,0 0,150 0,009 2019 Кабель КГВВнг-LS 10х0,5,м 70,0 0,180 0,013 2019 Кабель КГЕТП 4х4-0.66, м 45,0 0,330 0,015 2019 Кабель пит. 50-16000-220R, 1,0 0,100 0,000 2019 Провод ПВС 5х2.5, м 200,0 0,116 0,008 2019 Провод ПВС 5х2.5, м 200,0 0,253 0,051 2020 Кабель FYMYTW 16X1,5, м 18,0 0,253 0,051 2020 Кабель AAБПТ-6 3х95 340,0 2,898 0,985 2020 Кабель BBГ 1×1,5, м 200,0 0,039 0,008 2020 Кабель КВВГЭ 10х0.75, м 258,0 0,193 0,050 2020 Кабель КВВГ 3 4х0.75, м 500,0 0,089 0,045 2020 Кабель ВВГ 1×1,5, м 80,0 0,033			·				· ·
2018 Провод ПВ-3 1х1,5, м 160,0 0,020 0,003			1				-
CEO Кабель КГ 2х2,5, м 60,0 0,150 0,009 2019 Кабель КГВВнг-LS 10х0,5,м 70,0 0,180 0,013 2019 Кабель КГТП 4х4-0.66, м 45,0 0,330 0,015 2019 Кабель пит. 50-16000-220R, 1,0 0,100 0,000 2019 Провод ПВ-3 10, м 70,0 0,116 0,008 2019 Провод ПВС 5х2.5, м 200,0 0,253 0,051 2020 Кабель FYMYTW 16X1,5, м 18,0 0,594 0,011 2020 Кабель AAБЛГ-6 3х95 340,0 2,898 0,985 2020 Кабель BBГ 1×1,5, м 200,0 0,039 0,008 2020 Кабель КВВГЭ 10x0.75, м 258,0 0,193 0,050 2020 Кабель КВВГЭ 4x0.75, м 500,0 0,089 0,045 2020 Кабель КВВГ 3x4, м 210,0 0,330 0,084 2020 Кабель ВВГ 13x4, м 210,0 0,208 0,044 2018 Кабель С 2x2,5, м 170,0 0,150 0,026 <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td>			*				
СБО 2019 Кабель КГВВнг-LS 10х0,5,м 70,0 0,180 0,013			1				
СБО 2019 Кабель КГТП 4х4-0.66, м 45,0 0,330 0,015 2019 Кабель пит. 50-16000-220R, 1,0 0,100 0,000 2019 Провод ПВ-3 10, м 70,0 0,116 0,008 2019 Провод ПВС 5х2.5, м 200,0 0,253 0,051 2020 Кабель FYMYTW 16X1,5, м 18,0 0,594 0,011 2020 Кабель ААБЛГ-6 3х95 340,0 2,898 0,985 2020 Кабель ВВГ 1×1,5, м 200,0 0,039 0,008 2020 Кабель КВВГЭ 10х0.75, м 258,0 0,193 0,050 2020 Кабель КВВГЭ 4х0.75, м 500,0 0,089 0,045 2020 Кабель КГТП 4х4-0.66, м 255,0 0,330 0,084 2020 Кабель ВВГ 1×1,5, м 80,0 0,039 0,003 2018 Кабель ВВГ 1×1,5, м 80,0 0,039 0,003 2018 Кабель ВВГ 1 3х4, м 210,0 0,208 0,044 2018 Кабель КГ 2х2,5, м 170,0 0,150 0,026 2019 Кабель ВВГ 3х4, м 10,0 0,208 0,002 2020 Кабель ВВГ 3х4, м 200,0 0,208 0,002 2020 Кабель КГ 2х2,5, м 31,9 0,253 0,008 2019 Провод ПВС 5х2.5, м 109,5 0,253 0,008 2020 Кабель ВВГ 1×1,5, м 30,0 0,039 0,001		2019					The state of the s
СБО 2019 Кабель пит. 50-16000-220R, 1,0 0,100 0,000 2019 Провод ПВ-3 10, м 70,0 0,116 0,008 2019 Провод ПВС 5х2.5, м 200,0 0,253 0,051 2020 Кабель FYMYTW 16X1,5, м 18,0 0,594 0,011 2020 Кабель AAБЛГ-6 3х95 340,0 2,898 0,985 2020 Кабель BBГ 1×1,5, м 200,0 0,039 0,008 2020 Кабель КВВГЭ 10х0.75, м 258,0 0,193 0,050 2020 Кабель КВВГЭ 10х0.75, м 258,0 0,193 0,050 2020 Кабель КВВГЭ 10х0.75, м 255,0 0,330 0,084 2020 Кабель КВВГЭ 4х0.75, м 80,0 0,039 0,003 2020 Кабель ВВГ 1×1,5, м 80,0 0,039 0,003 ЖДЦ 2018 Кабель КГ 2х2,5, м 170,0 0,150 0,026 ЖДЦ 2019 Кабель ВВГ 13х4, м 200,0 0,097 0,019 2019 Кабель КГ 2х2,5, м		2019	Кабель КГтп 4х4-0.66, м	45,0		0,330	0,015
2019 Провод ПВ-3 10, м 70,0 0,116 0,008	СБО	2019	-				
2019 Провод ПВС 5x2.5, м 200,0 0,253 0,051		2019	Провод ПВ-3 10, м	70,0		0,116	0,008
2020 Кабель FYMYTW 16X1,5, м 18,0 0,594 0,011 2020 Кабель ААБЛГ-6 3х95 340,0 2,898 0,985 2020 Кабель ВВГ 1×1,5, м 200,0 0,039 0,008 2020 Кабель КВВГЭ 10х0.75, м 258,0 0,193 0,050 2020 Кабель КВВГЭ 4х0.75, м 500,0 0,089 0,045 2020 Кабель КГтп 4х4-0.66, м 255,0 0,330 0,084 2020 Кабель ВВГ 1×1,5, м 80,0 0,039 0,003 2018 Кабель ВВГп 3х4, м 210,0 0,208 0,044 2018 Кабель КГ 2х2,5, м 170,0 0,150 0,026 ЖДЦ 2019 Кабель ВВГп 3х4, м 200,0 0,097 0,019 2019 Кабель ВВГп 3х4, м 200,0 0,208 0,042 2018 Провод ПВС 5х2.5, м 31,9 0,253 0,008 2019 Кабель КГ 2х2,5, м 60,0 0,150 0,009 2019 Провод ПВС 5х2.5, м 109,5		2019		200,0			0,051
2020 Кабель ААБЛГ-6 3х95 340,0 2,898 0,985 2020 Кабель ВВГ 1×1,5, м 200,0 0,039 0,008 2020 Кабель КВВГЭ 10х0.75, м 258,0 0,193 0,050 2020 Кабель КВВГЭ 4х0.75, м 500,0 0,089 0,045 2020 Кабель КГтп 4х4-0.66, м 255,0 0,330 0,084 2020 Кабель ВВГ 1×1,5, м 80,0 0,039 0,003 2018 Кабель ВВГп 3х4, м 210,0 0,208 0,044 2019 Кабель КГ 2х2,5, м 170,0 0,150 0,026 2019 Кабель ВВГп 3х4, м 10,0 0,208 0,002 2020 Кабель ВВГп 3х4, м 200,0 0,208 0,042 РМЦ 2018 Провод ПВС 5х2.5, м 31,9 0,253 0,008 2019 Кабель КГ 2х2,5, м 60,0 0,150 0,009 2019 Провод ПВС 5х2.5, м 109,5 0,253 0,008 2020 Кабель ВВГ 1×1,5, м 30,0		2020	_	18,0		0,594	0,011
РМІЦ 2020 Кабель КВВГЭ 10х0.75, м 258,0 0,193 0,050 2020 Кабель КВВГЭ 4х0.75, м 500,0 0,089 0,045 2020 Кабель КГтп 4х4-0.66, м 255,0 0,330 0,084 2020 Кабель ВВГ 1×1,5, м 80,0 0,039 0,003 2018 Кабель ВВГп 3х4, м 210,0 0,208 0,044 2018 Кабель КГ 2х2,5, м 170,0 0,150 0,026 2019 Кабель ВВГп 3х4, м 200,0 0,097 0,019 2019 Кабель ВВГп 3х4, м 200,0 0,208 0,042 2018 Провод ПВС 5х2.5, м 31,9 0,253 0,008 2019 Кабель КГ 2х2,5, м 60,0 0,150 0,009 2019 Кабель КГ 2х2,5, м 109,5 0,253 0,028 2019 Кабель ВВГ 1×1,5, м 30,0 0,039 0,001		2020		340,0		2,898	0,985
РМЦ 2020 Кабель КВВГэ 4х0.75, м 500,0 0,089 0,045 2020 Кабель КГтп 4х4-0.66, м 255,0 0,330 0,084 2020 Кабель ВВГ 1×1,5, м 80,0 0,039 0,003 2018 Кабель ВВГ п 3х4, м 210,0 0,208 0,044 2018 Кабель КГ 2х2,5, м 170,0 0,150 0,026 2019 Кабель Сигн. САВА2 6х0.14, 200,0 0,097 0,019 2019 Кабель ВВГ п 3х4, м 10,0 0,208 0,002 2020 Кабель ВВГ п 3х4, м 200,0 0,208 0,042 РМЦ 2018 Провод ПВС 5х2.5, м 31,9 0,253 0,008 2019 Кабель КГ 2х2,5, м 60,0 0,150 0,009 2019 Кабель ВВГ 1×1,5, м 109,5 0,253 0,028 2020 Кабель ВВГ 1×1,5, м 30,0 0,039 0,001		2020	Кабель ВВГ 1×1,5, м	200,0		0,039	0,008
РМЦ 2020 Кабель КГтп 4х4-0.66, м 255,0 0,330 0,084 2020 Кабель ВВГ 1×1,5, м 80,0 0,039 0,003 2018 Кабель ВВГп 3х4, м 210,0 0,208 0,044 2018 Кабель КГ 2х2,5, м 170,0 0,150 0,026 2019 Кабель Сигн. САВА2 6х0.14, 200,0 0,097 0,019 2019 Кабель ВВГп 3х4, м 10,0 0,208 0,002 2020 Кабель ВВГп 3х4, м 200,0 0,208 0,042 РМЦ 2018 Провод ПВС 5х2.5, м 31,9 0,253 0,008 2019 Кабель КГ 2х2,5, м 60,0 0,150 0,009 2019 Провод ПВС 5х2.5, м 109,5 0,253 0,028 2020 Кабель ВВГ 1×1,5, м 30,0 0,039 0,001		2020	Кабель КВВГЭ 10х0.75, м	258,0		0,193	0,050
РМІЦ 2020 Кабель ВВГ 1×1,5, м 80,0 0,039 0,003 2018 Кабель ВВГп 3х4, м 210,0 0,208 0,044 2018 Кабель КГ 2х2,5, м 170,0 0,150 0,026 2019 Кабель Сигн. САВА2 6х0.14, 200,0 0,097 0,019 2019 Кабель ВВГп 3х4, м 10,0 0,208 0,002 2020 Кабель ВВГп 3х4, м 200,0 0,208 0,042 2018 Провод ПВС 5х2.5, м 31,9 0,253 0,008 2019 Кабель КГ 2х2,5, м 60,0 0,150 0,009 2019 Провод ПВС 5х2.5, м 109,5 0,253 0,028 2020 Кабель ВВГ 1×1,5, м 30,0 0,039 0,001		2020	Кабель КВВГэ 4х0.75, м	500,0		0,089	0,045
ЖДЦ 2018 Кабель ВВГп 3х4, м 210,0 0,208 0,044 2018 Кабель КГ 2х2,5, м 170,0 0,150 0,026 2019 Кабель Сигн. САВА2 6х0.14, 200,0 0,097 0,019 2019 Кабель ВВГп 3х4, м 10,0 0,208 0,002 2020 Кабель ВВГп 3х4, м 200,0 0,208 0,042 РМЦ 2018 Провод ПВС 5х2.5, м 31,9 0,253 0,008 2019 Кабель КГ 2х2,5, м 60,0 0,150 0,009 2019 Провод ПВС 5х2.5, м 109,5 0,253 0,028 2020 Кабель ВВГ 1×1,5, м 30,0 0,039 0,001		2020	Кабель КГтп 4х4-0.66, м	255,0		0,330	0,084
ЖДЦ 2018 Кабель ВВГп 3х4, м 210,0 0,208 0,044 2018 Кабель КГ 2х2,5, м 170,0 0,150 0,026 2019 Кабель Сигн. САВА2 6х0.14, 200,0 0,097 0,019 2019 Кабель ВВГп 3х4, м 10,0 0,208 0,002 2020 Кабель ВВГп 3х4, м 200,0 0,208 0,042 РМЦ 2018 Провод ПВС 5х2.5, м 31,9 0,253 0,008 2019 Кабель КГ 2х2,5, м 60,0 0,150 0,009 2019 Провод ПВС 5х2.5, м 109,5 0,253 0,028 2020 Кабель ВВГ 1×1,5, м 30,0 0,039 0,001			Кабель ВВГ 1×1,5, м			*	0,003
ЖДЦ 2018 Кабель КГ 2х2,5, м 170,0 0,150 0,026 2019 Кабель сигн. САВА2 6х0.14, 200,0 0,097 0,019 2019 Кабель ВВГп 3х4, м 10,0 0,208 0,002 2020 Кабель ВВГп 3х4, м 200,0 0,208 0,042 РМЦ 2018 Провод ПВС 5х2.5, м 31,9 0,253 0,008 2019 Кабель КГ 2х2,5, м 60,0 0,150 0,009 2019 Провод ПВС 5х2.5, м 109,5 0,253 0,028 2020 Кабель ВВГ 1×1,5, м 30,0 0,039 0,001							
ЖДЦ 2019 Кабель сигн. САВА2 6х0.14, 200,0 0,097 0,019 2019 Кабель ВВГп 3х4, м 10,0 0,208 0,002 2020 Кабель ВВГп 3х4, м 200,0 0,208 0,042 РМЦ 2018 Провод ПВС 5х2.5, м 31,9 0,253 0,008 2019 Кабель КГ 2х2,5, м 60,0 0,150 0,009 2019 Провод ПВС 5х2.5, м 109,5 0,253 0,028 2020 Кабель ВВГ 1×1,5, м 30,0 0,039 0,001			· ·				The state of the s
РМІЦ 2019 Кабель ВВГп 3х4, м 10,0 0,208 0,002 2020 Кабель ВВГп 3х4, м 200,0 0,208 0,042 РМІЦ 2018 Провод ПВС 5х2.5, м 31,9 0,253 0,008 2019 Кабель КГ 2х2,5, м 60,0 0,150 0,009 2019 Провод ПВС 5х2.5, м 109,5 0,253 0,028 2020 Кабель ВВГ 1×1,5, м 30,0 0,039 0,001	ждц	2019					
РМЦ 2020 Кабель ВВГп 3х4, м 200,0 0,208 0,042 2018 Провод ПВС 5х2.5, м 31,9 0,253 0,008 2019 Кабель КГ 2х2,5, м 60,0 0,150 0,009 2019 Провод ПВС 5х2.5, м 109,5 0,253 0,028 2020 Кабель ВВГ 1×1,5, м 30,0 0,039 0,001			·				
РМЦ 2018 Провод ПВС 5х2.5, м 31,9 0,253 0,008 2019 Кабель КГ 2х2,5, м 60,0 0,150 0,009 2019 Провод ПВС 5х2.5, м 109,5 0,253 0,028 2020 Кабель ВВГ 1×1,5, м 30,0 0,039 0,001							The state of the s
РМЦ 2019 Кабель КГ 2х2,5, м 60,0 0,150 0,009 2019 Провод ПВС 5х2.5, м 109,5 0,253 0,028 2020 Кабель ВВГ 1×1,5, м 30,0 0,039 0,001			·				
РМЦ 2019 Провод ПВС 5х2.5, м 109,5 0,253 0,028 2020 Кабель ВВГ 1×1,5, м 30,0 0,039 0,001	DIAT	2019	1				0,009
2020 Кабель ВВГ 1×1,5, м 30,0 0,039 0,001	РМЦ						
		2020	*				
0,000		2020	Кабель КГ 2х2,5, м	40,0		0,150	0,006
2018 Кабель АВВГнг 1х2.5 200.0 0.037 0.007	III	2018		200,0			
ЦГП 2020 Кабель ВВГнг 1х1.5, м 300,0 0,039 0,012	ЩП		·				The state of the s
Итого: 10,062		1			1		· ·

расчета годового образования отхода при в проведении ремонтных работ по подразделениям представлены в таблице 4.82.2.

Таблица 4.82.2 – Результаты расчета образования отхода

	План проведения ремонтных р бот					ых ра-		1 атив	Годовое образование отхода, т/год					
Цех		c 1.2022		23-)28		по 1.2029	— обр. отхода кг/ремонт		c 27.07.2021		2022-2025		по 26.07.2026	
	ТК	КР	ТК	КР	ТК	КР	ТК	КР	ТК	КР	ТК	КР	ТК	КР
Вароч- ный цех	10	1	10	1	5	1	0,9	2	0,0093	0,002	0,0093	0,002	0,00498	0,0011
РСУ	211	29	211	29	113	15	0,9	2	0,195	0,0568	0,195	0,0568	0,10488	0,0305

Норматив образования отхода составляет 0,263 т/год.

1.83 Отходы изолированных проводов и кабелей (4 82 302 01 52 5)

Для обоснования норматива образования отхода согласно п. 8 МУ используется критерий, указывающий на утрату товара потребительских свойств – данные о замене проводов и кабелей на предприятии за последние три года. Справочные данные предприятия представлены в Приложении 1, книга 2, на стр. 370-373. Расчет норматива обоснования отхода произведен в соответствии с Методическими рекомендациями по оценке объемов образования отходов производства и потребления, Москва, 2003, ГУ НИЦПУРО, по формуле:

 $M\kappa$. = $Li \cdot m \cdot 10^{-3}$, τ/Γ од

где: Li – длина отработанной проводки, м;

т – масса 1 пог.м проводки, кг;

Исходные данные и расчет приведены в таблице 4.83.1

Таблица 4.83.1- Результаты расчета

1.84 Отходы полипропиленовой тары незагрязненной (4 34 120 04 51 5)

Для обоснования норматива образования отхода согласно п. 8 МУ используются показатели, характеризующие образование отхода - данные предприятия о расходе химикатов, согласно нормативам расхода химикатов. Копия нормативов расхода химикатов представлена в Приложении 1, книга 2, стр. 399-404. В таблице 4.84.1 представлены результаты расчета.

Таблица 4.84.1- Результаты расчета

Цех	Наимен. химиката	Расход, кг/т	Выра- ботка, т	Вес в таре, кг	Масса од- ной упа- ковки, кг	Кол-во тары, шт.	Норматив обра- зования отхода, т/год
			Произво	одство бумаги,	T		
Бум.фаб- рика (БДМ№9)	катионный крахмал	7,1	381085	1000	0,98	2706	2,673
Бум.фаб- рика(БДМ №10)	катионный крахмал	7	381085	1000	0,98	2668	2,636
Бум.фаб- рика БДМ№11)	катионный крахмал	7,5	381085	1000	0,98	2858	2,824
Бум.фаб- рика (БДМ№9)	глинозем	24,6	381085	1000	0,98	9375	9,262

Бум.фаб- рика(БДМ 10)	глинозем	15,6	381085	1000	0,98	5945	5,874
Бум.фаб- рика БДМ№11)	глинозем	15,4	381085	1000	0,98	5869	5,798
		I	Іодготовка вод	ы,тыс.м ³ химо	нищ.воды		
XBO	Трилон Б	1,8	2772,229	25	0,14	200	0,029
СБО	Аммофос	8	2772,229	800	0,14	28	0,004
СБО	Флокулянт	3,5	2772,229	50	0,14	194	0,028
						Итого:	29,127

Таблица 4.85.1 - Нормативы образования отходов (по образцу Приложения №3 МУ)

№ п/п	Наименование вида отходов	Код отхо- дов по ФККО	Класс опасности для ОС	Происхождение вида отходов	Единица измерения	Значение нор- матива образо- вания отходов
1	2	3	4	5	6	7
1	Лампы ртутные, ртутно-кварцевые, люминесцентные, утратившие потребительские свойства	4 71 101 01 52 1	1	Использование по назначению с утратой потребительских свойств ламп ртутных, ртутно-кварцевых, люминесцентных	т/год	1,514
2	Отходы термометров ртутных	4 71 920 00 52 1	1	Использование по назначению с утратой потребительских свойств термометров ртутных	т/год	0,003
3	Аккумуляторы свинцовые отработанные неповрежденные, с электролитом	9 20 110 01 53 2	2	Утрата потребительских свойств в процессе эксплуатации или при хранении аккумуляторов свинцовых отработанных неповрежденных, с электролитом	т/год	0,473
4	Химические источники тока марганцово-цин- ковые щелочные неповрежденные отработан- ные	4 82 201 11 53 2	2	Утрата потребительских свойств, обеспечивающих целевое назначение продукции химических источников тока марганцово-цинковых щелочных неповрежденных	т/год	0,007
5	Шпалы железнодорожные деревянные, пропитанные антисептическими средствами, отработанные	8 41 000 01 51 3	3	Демонтаж, ремонт железнодорожного путевого хозяйства (шпал железнодорожных деревянных, пропитанных антисептическими средствами)	т/год	4
6	Шлам очистки емкостей и трубопроводов от нефти и нефтепродуктов	9 11 200 02 39 3	3	Зачистка и промывка оборудования для хранения, транспортирования и обработки нефти и нефтепродуктов (шлам очистки емкостей от нефти и нефтепродуктов)	т/год	1,074
7	Золосажевые отложения при очистке оборудования ТЭС, ТЭЦ, котельных умеренно опасные	6 18 902 01 20 3	3	Снятие золосажевых отложений с наружных поверхностей нагрева котлоагрегатов, газоходов при очистке оборудования ТЭС, ТЭЦ, котельных	т/год	0,535
8	Отходы минеральных масел моторных	4 06 110 01 31 3	3	Использование по назначению с утратой потребительских свойств минеральных масел моторных	т/год	2,194
9	Отходы минеральных масел индустриальных	4 06 130 01 31 3	3	Использование по назначению с утратой потребительских свойств минеральных масел индустриальных	т/год	33,665
10	Отходы минеральных масел трансмиссионных	4 06 150 01 31 3	3	Использование по назначению с утратой потребительских свойств минеральных масел трансмиссионных	т/год	5,823
11	Отходы минеральных масел трансформаторных, не содержащих галогены	4 06 140 01 31 3	3	Использование по назначению с утратой потребительских свойств минеральных масел трансформаторных, не содержащих галогены	т/год	0,828

№ п/п	Наименование вида отходов	Код отхо- дов по ФККО	Класс опасности для ОС	Происхождение вида отходов	Единица измерения	Значение нор- матива образо- вания отходов
1	2	3	4	5	6	7
12	Отходы минеральных масел турбинных	4 06 170 01 31 3	3	Использование по назначению с утратой потребительских свойств минеральных масел турбинных	т/год	9,107
13	Отходы минеральных масел гидравлических, не содержащих галогены	4 06 120 01 31 3	3	Использование по назначению с утратой потребительских свойств минеральных масел гидравлических, не содержащих галогены	т/год	13,903
14	Фильтры очистки масла автотранспортных средств отработанные	9 21 302 01 52 3	3	Замена комплектующих и принадлежностей (фильтров очистки масла) для автотранспортных средств	т/год	0,055
15	Сальниковая набивка асбесто-графитовая промасленная (содержание масла 15 % и более)	9 19 202 01 60 3	3	Утрата потребительских свойств сальниковой набивки асбесто-графитовой в связи с загрязнением	т/год	0,706
16	Фильтры очистки топлива автотранспортных средств отработанные	9 21 303 01 52 3	3	Замена комплектующих и принадлежностей (фильтров очистки топлива) для автотранспортных средств	т/год	0,069
17	Опилки и стружка древесные, загрязненные нефтью или нефтепродуктами (содержание нефти или нефтепродуктов 15% и более)	9 19 205 01 39 3	3	Ликвидация проливов нефти и нефтепродуктов (опилки и стружка древесные)	т/год	0,502
18	Всплывшие нефтепродукты из нефтеловушек и аналогичных сооружений	4 06 350 01 31 3	3	Механическая очистка нефтесодержащих сточных вод	т/год	0,536
19	Фильтры очистки масла компрессорных установок отработанные (содержание нефтепродуктов 15% и более)	9 18 302 81 52 3	3	Замена фильтров очистки масла компрессорных установок	т/год	0,042
20	Фильтры очистки масла двигателей железнодорожного подвижного состава отработанные	9 22 221 05 52 3	3	Замена фильтров очистки масла двигателей железнодорожного подвижного состава	т/год	0,966
21	Фильтры очистки топлива двигателей железнодорожного подвижного состава отработанные	9 22 221 07 52 3	3	Замена фильтров очистки топлива двигателей железнодорожного подвижного состава	т/год	0,004
22	Сетки сушильные и формующие полиэфирные бумагоделательных машин, утратившие потребительские свойства	3 06 121 91 51 4	4	Использование по назначению с утратой потребительских свойств сеток сушильных и формующих полиэфирных бумагоделательных машин	т/год	2,071
23	Фильтры воздушные автотранспортных средств отработанные	9 21 301 01 52 4	4	Замена комплектующих и принадлежностей (фильтров воздушных) для автотранспортных средств	т/год	0,122
24	Фильтры воздушные двигателей железнодорожного подвижного состава отработанные	9 22 221 02 52 4	4	Замена воздушных фильтров двигателей железнодорожного подвижного состава	т/год	0,105

№ п/п	Наименование вида отходов	Код отхо- дов по ФККО	Класс опасности для ОС	Происхождение вида отходов	Единица измерения	Значение нор- матива образо- вания отходов
1	2	3	4	5	6	7
25	Фильтры воздушные компрессорных установок в полимерном корпусе отработанные	9 18 302 66 52 4	4	Замена воздушных фильтров компрессорных установок	т/год	0,001
26	Обувь кожаная рабочая, утратившая потребительские свойства	4 03 101 00 52 4	4	Использование по назначению обуви кожаной ра- бочей с утратой потребительских свойств в преде- лах установленных сроков эксплуатации	т/год	2,194
27	Отходы коры	3 05 100 01 21 4	4	Окорка древесины	т/год	117012,460
28	Пыль древесная от шлифовки натуральной чистой древесины	3 05 311 01 42 4	4	Шлифовка натуральной чистой древесины	т/год	0,005
29	Древесные отходы от сноса и разборки зданий	8 12 101 01 72 4	4	Снос и разборка зданий	т/год	156,700
30	Осадок гашения извести при производстве известкового молока	3 46 910 01 39 4	4	Производство известкового молока	т/год	5345,379
31	Отходы рубероида	8 26 210 01 51 4	4	Замена рубероида при строительных, ремонтных работах	т/год	34,246
32	Золосажевые отложения при очистке оборудования ТЭС, ТЭЦ, котельных малоопасные	6 18 902 02 20 4	4	Снятие золосажевых отложений с наружных поверхностей нагрева котлоагрегатов при очистке оборудования ТЭС, ТЭЦ, котельных	т/год	284,847
33	Пыль (порошок) абразивные от шлифования черных металлов с содержанием металла менее 50 %	3 61 221 02 42 4	4	Шлифование черных металлов	т/год	0,862
34	Отходы базальтового волокна и материалов на его основе	4 57 112 01 20 4	4	Использование по назначению базальтового волокна с утратой потребительских свойств	т/год	7,462
35	Резиновые перчатки, утратившие потребительские свойства, незагрязненные	4 31 141 01 20 4	4	Использование резиновых перчаток по назначению с утратой потребительских свойств	т/год	1,071
36	Отходы асбеста в кусковой форме	3 48 511 01 20 4	4	Использование по назначению асбеста с утратой потребительских свойств	т/год	7,894
37	Шлак сварочный	9 19 100 02 20 4	4	Производство сварочных работ	т/год	0,368
38	Отходы зачистки емкостей хранения, приготовления растворов реагентов (коагулянтов) на основе соединений алюминия	7 10 207 21 39 4	4	Зачистка емкостей хранения, приготовления растворов реагентов (коагулянтов) на основе соединений алюминия	т/год	31,204
39	Смет с территории предприятия малоопасный	7 33 390 01 71 4	4	Чистка и уборка территории предприятия	т/год	123,500

№ п/п	Наименование вида отходов	Код отхо- дов по ФККО	Класс опасности для ОС	Происхождение вида отходов	Единица измерения	Значение нор- матива образо- вания отходов
1	2	3	4	5	6	7
40	Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15 %)	9 19 204 02 60 4	4	Протирки деталей и узлов агрегатов обтирочным материалом	т/год	3,280
41	Тара из черных металлов, загрязненная лако- красочными материалами (содержание менее 5 %)	4 68 112 02 51 4	4	Использование тары из черных металлов по назначению с утратой потребительских свойств в связи с загрязнением лакокрасочными материалами	т/год	0,316
42	Покрышки пневматических шин с металлическим кордом отработанные	9 21 130 02 50 4	4	Обслуживание и ремонт автомобильного транспорта, замена покрышек пневматических шин с металлическим кордом	т/год	5,524
43	Мусор от офисных и бытовых помещений организаций несортированный (исключая крупногабаритный)	7 33 100 01 72 4	4	Чистка и уборка нежилых помещений	т/год	73,660
44	Мусор от сноса и разборки зданий несортированный	8 12 901 01 72 4	4	Снос и разборка зданий	т/год	2045,146
45	Кора с примесью земли	3 05 100 02 29 4	4	Зачистка вагонов и площадок после выгрузки неокоренной древесины	т/год	1853,459
46	Отходы упаковочных материалов из бумаги и картона, загрязненные неметаллическими нерастворимыми или малорастворимыми минеральными продуктами	4 05 911 31 60 4	4	Использование по назначению с утратой потребительских свойств упаковочных материалов из бумаги и картона	т/год	0,393
47	Мониторы компьютерные жидкокристаллические, утратившие потребительские свойства	4 81 205 02 52 4	4	Транспортирование, хранение, использование по назначению с утратой потребительских свойств мониторов компьютерных жидкокристаллических	т/год	0,111
48	Системный блок компьютера, утративший потребительские свойства	4 81 201 01 52 4	4	Использование по назначению с утратой потребительских свойств системного блока компьютера	т/год	0,070
49	Принтеры, сканеры, многофункциональные устройства (МФУ), утратившие потребительские свойства	4 81 202 01 52 4	4	Использование по назначению с утратой потребительских свойств принтеров, сканеров, многофункциональных устройств (МФУ)	т/год	0,200
50	Клавиатура, манипулятор «мышь» с соединительными проводами, утратившие потребительские свойства	4 81 204 01 52 4	4	Использование по назначению с утратой потребительских свойств клавиатуры, манипулятора «мышь» с соединительными проводами	т/год	0,041
51	Зола от сжигания древесного топлива умеренно опасная	6 11 900 01 40 4	4	Золоудаление золы от сжигания древесного топлива	т/год	1273,598
52	Лом футеровок печей и печного оборудования производства негашеной извести	9 12 145 41 20 4	4	Ремонт и зачистка известерегенерационных печей	т/год	474,502

№ п/п	Наименование вида отходов	Код отхо- дов по ФККО	Класс опасности для ОС	Происхождение вида отходов	Единица измерения	Значение нор- матива образо- вания отходов
1	2	3	4	5	6	7
53	Отходы минерального процесса сортирования целлюлозы при ее производстве	3 06 111 12 39 4	4	Извлечение древесных включений из целлюлозной массы	т/год	206,888
54	Светильники со светодиодными элементами в сборе, утратившие потребительские свойства	4 82 427 11 52 4	4	Использование по назначению с утратой потребительских свойств светильников со светодиодными элементами в сборе	т/год	0,217
55	Спецодежда из хлопчатобумажного и смешанных волокон, утратившая потребительские свойства, незагрязненная	4 02 110 01 62 4	4	Использование по назначению с утратой потребительских свойств в пределах установленных сроков эксплуатации спецодежды из хлопчатобумажного и смешанных волокон	т/год	7,117
56	Отходы известняка, доломита и мела в виде порошка и пыли малоопасные	2 31 112 03 40 4	4	Дробление известняка, доломита, мела (отходы известняка, доломита и мела в виде порошка и пыли малоопасные)	т/год	114,707
57	Отходы (шлам) при очистке сетей, колодцев хозяйственно-бытовой и смешанной канализации	7 22 800 01 39 4	4	Очистка сетей, колодцев хозяйственно-бытовой и смешанной канализации	т/год	0,600
58	Ткань фильтровальная из полимерных волокон, загрязненная нерастворимыми или малорастворимыми минеральными веществами	4 43 221 91 60 4	4	Использование ткани фильтровальной с утратой потребительских свойств	т/год	0,160
59	Осадок механической очистки нефтесодержащих сточных вод, содержащий нефтепродукты в количестве менее 15%	7 23 102 02 39 4	4	Очистка нефтесодержащих сточных вод на локальных очистных сооружениях	т/год	18,763
60	Упаковка полимерная, загрязненная реагентами для производства целлюлозы	3 06 053 11 51 4	4	Распаковка реагентов для производства целлю-лозы	т/год	26,797
61	Осадок (ил) биологической очистки сточных вод целлюлозно-бумажного производства	3 06 851 21 32 5	5	Биологическая очистка сточных вод целлюлозно-бумажного производства осадок	т/год	1319,279
62	Осадки механической и биологической очистки сточных вод целлюлозно-бумажного производства и хозяйственно-бытовых сточных вод в смеси обезвоженные	3 06 821 11 39 5	5	Механическая и биологическая очистка сточных вод целлюлозно-бумажного производства и хозяйственно-бытовых сточных вод	т/год	47406,257
63	Осадок сточных вод мойки автомобильного транспорта практически неопасный	9 21 751 12 39 5	5	Механическая очистка сточных вод мойки автомо- бильного транспорта	т/год	0,619
64	Отходы песчаной загрузки кипящего слоя в смеси с твердыми остатками сжигания кородревесных отходов	7 42 218 31 40 5	5	Замена песчаной загрузки кипящего слоя котла сжигания кородревесных отходов	т/год	889,140

№ п/п	Наименование вида отходов	Код отхо- дов по ФККО	Класс опасности для ОС	Происхождение вида отходов	Единица измерения	Значение нор- матива образо- вания отходов
1	2	3	4	5	6	7
65	Зола от сжигания древесного топлива практически неопасная	6 11 900 02 40 5	5	Удаление золы от сжигания древесного топлива	т/год	3873,243
66	Горбыль из натуральной чистой древесины	3 05 220 01 21 5	5	Распиловка и строгание древесины	т/год	0,325
67	Щепа натуральной чистой древесины	3 05 220 03 21 5	5	Распиловка и строгание древесины	т/год	5939,770
68	Опилки натуральной чистой древесины	3 05 230 01 43 5	5	Распиловка и строгание древесины	т/год	41410,601
69	Стружка натуральной чистой древесины	3 05 230 02 22 5	5	Распиловка и строгание древесины	т/год	0,146
70	Бой стекла	3 41 901 01 20 5	5	Использование по назначению с утратой потребительских свойств стеклянных изделий	т/год	2,625
71	Бой шамотного кирпича	3 42 110 01 20 5	5	Проведение ремонтных работ котлоагрегатов	т/год	72,862
72	Лом кирпичной кладки от сноса и разборки зданий	8 12 201 01 20 5	5	Снос и разборка зданий	т/год	414,995
73	Абразивные круги отработанные, лом отработанных абразивных кругов	4 56 100 01 51 5	5	Использование абразивных кругов по назначению с утратой потребительских свойств	т/год	0,212
74	Лом и отходы стальные несортированные	4 61 200 99 20 5	5	Обращение со сталью и продукцией из нее, приводящее к утрате ими потребительских свойств	т/год	4055,091
75	Остатки и огарки стальных сварочных электродов	9 19 100 01 20 5	5	Сварочные работы	т/год	0,046
76	Лом и отходы, содержащие незагрязненные черные металлы в виде изделий, кусков, несортированные	4 61 010 01 20 5	5	Обращение с черными металлами и продукцией из них, приводящее к утрате ими потребительских свойств	т/год	2638,978
77	Стружка черных металлов несортированная незагрязненная	3 61 212 03 22 5	5	Механическая обработка металлов	т/год	104,145
78	Тормозные колодки отработанные без накладок асбестовых	9 20 310 01 52 5	5	Обслуживание и ремонт транспортных средств, замена тормозных колодок отработанных	т/год	6,299
79	Лом и отходы алюминия несортированные	4 62 200 06 20 5	5	Обращение с алюминием и продукцией из него, приводящее к утрате ими потребительских свойств	т/год	2,570
80	Лом и отходы незагрязненные, содержащие медные сплавы в виде изделий, кусков, несортированные	4 62 100 01 20 5	5	Обращение с продукцией из меди, медных сплавов, приводящее к утрате ею потребительских свойств	т/год	0,263

№ п/п	Наименование вида отходов	Код отхо- дов по ФККО	Класс опасности для ОС	Происхождение вида отходов	Единица измерения	Значение нор- матива образо- вания отходов
1	2	3	4	5	6	7
81	Прочие несортированные древесные отходы из натуральной чистой древесины	3 05 291 91 20 5	5	Повреждение обшивки вагонов при доставке древесного сырья	т/год	1707,998
82	Ленты конвейерные, приводные ремни утратившие потребительские свойства, незагрязненные		5	Использование лент конвейерных, приводных ремней по назначению с утратой потребительских свойств	т/год	106,318
83	Отходы изолированных проводов и кабелей	4 82 302 01 52 5	5	Использование по назначению с утратой потребительских свойств изолированных проводов и кабелей	т/год	10,062
84	Отходы полипропиленовой тары незагрязненной	4 34 120 04 51 5	5	Растаривание химикатов при производстве бумаги и очистки воды	т/год	29,127

5.2. Обоснование запрашиваемых лимитов на размещение отходов производства и потребления

Определение максимального образования отхода за год на предприятии проводилось расчётным путем с применением расчета по материально-сырьевому балансу, методом расчета по фактическим объемам образования отходов (статистический метод).

В процессе проведения расчётов были использованы:

- удельные нормативы образования отходов;
- сведения о сроке службы материалов и изделий;
- критерии, указывающие на утрату товаров (продукции) потребительских свойств;
- плановых показателей производства продукции и выполнения работ;
- данные предприятия о величине годовых расходов сырья и материалов (НООЛР, Приложение 1);
- данные предприятия о планируемых строительных и ремонтных работах (НООЛР, Приложение 1);
- справочная литература и другие документы, содержащие нормативы образования отходов.

1.85 Лампы ртутные, ртутно-кварцевые, люминесцентные, утратившие потребительские свойства

(4 71 101 01 52 1)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода приведенным в п. 4.1. Результаты расчета годового образования отхода по каждому структурному подразделению представлены в таблице 5.1.1.

Таблица 5.1.1 - Результаты расчета годового образования отхода

			Годово	ое образова	ание отход	а, т/год		
Цех/участок	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
ЛПЦ	0,137	0,144	0,144	0,144	0,144	0,144	0,144	0,007
Варочный цех	0,149	0,156	0,156	0,156	0,156	0,156	0,156	0,007
Химкорпус	0,124	0,131	0,131	0,131	0,131	0,131	0,131	0,006
ТЭС-2	0,143	0,150	0,150	0,150	0,150	0,150	0,150	0,007
ЦРТМ	0,148	0,156	0,156	0,156	0,156	0,156	0,156	0,007
Бумажная фабрика	0,394	0,415	0,415	0,415	0,415	0,415	0,415	0,019
ТЭЦ-1	0,113	0,119	0,119	0,119	0,119	0,119	0,119	0,006
АТЦ	0,019	0,020	0,020	0,020	0,020	0,020	0,020	0,001
ждц	0,011	0,012	0,012	0,012	0,012	0,012	0,012	0,001
РМЦ	0,028	0,030	0,030	0,030	0,030	0,030	0,030	0,001
ЦРО	0,008	0,009	0,009	0,009	0,009	0,009	0,009	0,000
КИПиА	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,000
ЦГП	0,020	0,022	0,022	0,022	0,022	0,022	0,022	0,001
Столовая	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,000
Медпункт	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,000
Заводоуправление	0,028	0,029	0,029	0,029	0,029	0,029	0,029	0,001
Вневедом. охрана	0,016	0,017	0,017	0,017	0,017	0,017	0,017	0,001
СБО	0,059	0,062	0,062	0,062	0,062	0,062	0,062	0,003
Наружное	0,033	0,035	0,035	0,035	0,035	0,035	0,035	0,002
Итого:	1,440	1,514	1,514	1,514	1,514	1,514	1,514	0,071

Максимальное значение годового количества образования отхода составит 1,514 т/год.

1.86 Отходы термометров ртутных (4 71 920 00 52 1)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода приведенным в п. 4.2. Результаты расчета годового образования отхода представлены в таблице 5.1.2.

Таблица 5.2.1 - Результаты расчета годового образования отхода

Цех		Годовое образование отхода, т/год										
цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029				
СПЛ	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,0001				

Максимальное значение годового количества образования отхода составит 0,003 т/год.

1.87 Аккумуляторы свинцовые отработанные неповрежденные, с электролитом (9 20 110 01 53 2)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода приведенным в п. 4.3. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.3.1.

Таблица 5.3.1 – Результаты расчета годового образования отхода

Цех	Наименование оборудования/	Год уста-	Срок службы,	План. год	Годовое образование отхода, т/год								
цех	техники	уста- новки	лет	замены	2022	2023	2024	2025	2026	2027	2028	2029	
TOC 2	STARK 6 OpzS600	2017	25	2042									
ТЭС-2	CK-12	1999	25	2024			4,030						
	СК-16	1999	25	2024			6,890						
TOIL 1	CK-10	1999	25	2024			7,752						
ТЭЦ-1	СК-12	1999	25	2024			5,750						
	Тепловоз ТЭМ2	2016	3	2021/2025				0,042			0,042		
	Тепловоз ТЭМ2	2017	3	2021/2025				0,042			0,042		
	Тепловоз ТЭМ2	2016	3	2021/2025				0,042			0,042		
жпп	Мотовоз МПТ-6	2018	3	2022/ 2026	0,098				0,098			0,098	
ждц	Снегоуборочный поезд СМ-2Б	2018	3	2022/ 2026	0,098				0,098			0,098	
	Ж/д кран КЖ- 561	2018	3	2022/ 2026	0,098				0,098			0,098	
АТЦ	Автотранспорт				0,473	0,473	0,473	0,473	0,473	0,473	0,473	0,473	
				Итого:	0,768	0,473	24,895	0,599	0,768	0,473	0,599	0,768	

Максимальное значение годового количества образования отхода составит 24,895 т/год

1.88 Химические источники тока марганцово-цинковые щелочные неповрежденные отработанные

(9 20 110 01 53 2)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода приведенным в п. 4.4. Результаты расчета годового образования отхода представлены в таблице 5.4.1.

Таблица 5.4.1 - Результаты расчета годового образования отхода

	Годовое образование отхода, т/год											
c 18.01.2022	с 18.01.2022 2023 2024 2025 2026 2027 2028 по 17.01.2029											
0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,0003					

Максимальное значение годового количества образования отхода составит 0,007 т/год.

1.89 Шпалы железнодорожные деревянные, пропитанные антисептическими средствами, отработанные (8 41 000 01 51 3)

Расчет годового образования отхода произведен в соответствии с данными акта осмотра технического состояния подъездного железнодорожного пути (Приложение 1, стр. 469–478), сводные данные представлены в таблице 5.5.1.

Таблица 5.5.1 – Сводные данные акта осмотра технического состояния железнодорожного пути

Год проведения работ

Сводные данные акта осмотра технического состояния подъездного железнодорожного пути	2019	2020	2021
Количество шпал железнодорожных, подлежащих замене, шт.	997	1051	218

Количество шпал, подлежащих замене в 2021, 2022 году принято согласно данным акта осмотра технического состояния подъездного железнодорожного пути. Количество шпал, подлежащих замене в 2023-2026 году принято согласно статистическому методу — 755 штук.

Образование отхода рассчитано по формуле:

$$M = N \cdot m \cdot 10^{-3}$$
, т/год

где: N - количество шпал, подлежащих замене, шт.

m – средняя масса одной шпалы, согласно данным предприятия составляет 80 кг (Приложение 1 стр.).

Результаты годового образования отхода представлены таблице 5.5.2.

Таблица 5.5.2 – Результаты расчета годового образования отхода

		Год образования отходов								
	2022	2023	2024	2025	2025	2027	2028	по 17.01.2029		
Количество шпал, подлежащих замене, шт.	50	755	755	755	755	755	755	35		
Годовое образование отхода, т/год	4,000	60,427	60,427	60,427	60,427	60,427	60,427	2,814		

Максимальное значение годового количества образования отхода составит 60,427 т/год.

1.90 Шлам очистки емкостей и трубопроводов от нефти и нефтепродуктов (9 11 200 02 39 3) Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.6. Увеличение объемов использования дизельного топлива и бензина на предприятии не планируется. Очистка резервуаров осуществляется 1 раз в год. Результаты расчета годового образования отхода представлены в таблице 5.6.1.

Таблица 5.6.1- Результаты расчета годового образования отхода

	Годовое образование отхода, т/год											
c 18.01.2022	с 18.01.2022 2023 2024 2025 2026 2027 2028 по 17.01.2029											
1,021	1,021 1,074 1,074 1,074 1,074 1,074 1,074 0 ,050											

Максимальное значение годового количества образования отхода составит 1,074 т/год.

1.91 Золосажевые отложения при очистке оборудования ТЭС, ТЭЦ, котельных умеренно опасные (6 18 902 01 20 3)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.7. На предприятии не планируется увеличение расхода, сжигаемого на ТЭЦ-1 (паровые котлы №8-10 и водогрейные котлы №3,4) мазутного топлива. Результаты расчета годового образования отхода представлены в таблице 5.7.1.

Таблица 5.7.1- Результаты расчета годового образования отхода

Годовое образование отхода, т/год											
c 18.01.2022	с 18.01.2022 2023 2024 2025 2026 2027 2028 по 17.01.2029										
0,509	0,535	0,535	0,535	0,535	0,535	0,535	0,025				

Максимальное значение годового количества образования отхода составит 0,535 т/год.

1.92 Отходы минеральных масел моторных (4 06 110 01 31 3)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.8. Увеличение использования минеральных масел моторных на предприятии не планируется. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.8.1.

Таблица 5.8.1- Результаты расчета годового образования отхода

Цех	Годовое образование отхода, т/год									
цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029		
Варочный цех	0,046	0,048	0,048	0,048	0,048	0,048	0,048	0,002		
ТЭС-2	0,046	0,048	0,048	0,048	0,048	0,048	0,048	0,002		
ЦРТМ	0,015	0,016	0,016	0,016	0,016	0,016	0,016	0,001		
ТЭЦ-1	0,089	0,094	0,094	0,094	0,094	0,094	0,094	0,004		
АТЦ	0,586	0,616	0,616	0,616	0,616	0,616	0,616	0,029		
ждц	0,794	0,835	0,835	0,835	0,835	0,835	0,835	0,039		
Складское хоз-	0,511	0,538	0,538	0,538	0,538	0,538	0,538	0,025		
Итого:	2,087	2,194	2,194	2,194	2,194	2,194	2,194	0,102		

Максимальное значение годового количества образования отхода составит 2,194 т/год.

1.93 Отходы минеральных масел индустриальных (4 06 130 01 31 3)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.9. Увеличение использования минеральных масел индустриальных на предприятии не планируется. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.9.1.

Таблица 5.9.1- Результаты расчета годового образования отхода

П			Годовоє	е образован	ие отхода,	т/год		
Цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
ЛПЦ	4,370	4,597	4,597	4,597	4,597	4,597	4,597	0,214
Варочный цех	0,808	0,85	0,85	0,85	0,85	0,85	0,85	0,040
Химкорпус	2,586	2,72	2,72	2,72	2,72	2,72	2,72	0,127
T9C-2	0,554	0,583	0,583	0,583	0,583	0,583	0,583	0,027
ЦРТМ	8,166	8,59	8,59	8,59	8,59	8,59	8,59	0,400
Бумажная фаб- рика	13,149	13,831	13,831	13,831	13,831	13,831	13,831	0,644
ТЭЦ-1	0,201	0,211	0,211	0,211	0,211	0,211	0,211	0,010
СБО	0,179	0,188	0,188	0,188	0,188	0,188	0,188	0,009
АТЦ	0,775	0,815	0,815	0,815	0,815	0,815	0,815	0,038
ждц	0,092	0,097	0,097	0,097	0,097	0,097	0,097	0,005
РМЦ	0,696	0,732	0,732	0,732	0,732	0,732	0,732	0,034
РСУ	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,000
ЦРО	0,428	0,45	0,45	0,45	0,45	0,45	0,45	0,021
Итого:	32,007	33,665	33,665	33,665	33,665	33,665	33,665	1,568

Максимальное значение годового количества образования отхода составит 33,665 т/год.

1.94 Отходы минеральных масел трансмиссионных (4 06 150 01 31 3)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.10. Увеличение использования минеральных масел

трансмиссионных на предприятии не планируется. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.10.1.

Таблица 5.10.1- Результаты расчета годового образования отхода

Цех	Годовое образование отхода, т/год								
цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029	
АТЦ	5,536	5,823	5,823	5,823	5,823	5,823	5,823	0,271	

Максимальное значение годового количества образования отхода составит 5,823 т/год.

1.95 Отходы минеральных масел трансформаторных, не содержащих галогены (4 06 140 01 31 3)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.11. Увеличение использования минеральных масел трансформаторных на предприятии не планируется. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.11.1.

Таблица 5.11.1- Результаты расчета годового образования отхода

Цех	Годовое образование отхода, т/год							
цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
ЛПЦ	0,202	0,212	0,212	0,212	0,212	0,212	0,212	0,010
Химкорпус	0,211	0,222	0,222	0,222	0,222	0,222	0,222	0,010
ТЭС-2	0,169	0,178	0,178	0,178	0,178	0,178	0,178	0,008
ТЭЦ-1	0,205	0,216	0,216	0,216	0,216	0,216	0,216	0,010
Итого:	0,787	0,828	0,828	0,828	0,828	0,828	0,828	0,039

Максимальное значение годового количества образования отхода составит 0,828 т/год.

1.96 Отходы минеральных масел турбинных (4 06 170 01 31 3)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.12. Увеличение использования минеральных масел турбинных на предприятии на планируется. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.12.1.

Таблица 5.12.1- Результаты расчета годового образования отхода

How	Годовое образование отхода, т/год									
Цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029		
ТЭС-2	3,706	3,898	3,898	3,898	3,898	3,898	3,898	0,182		
Бумажная фабрика	2,064	2,171	2,171	2,171	2,171	2,171	2,171	0,101		
ТЭЦ-1	1,591	1,674	1,674	1,674	1,674	1,674	1,674	0,078		
СБО	1,296	1,363	1,363	1,363	1,363	1,363	1,363	0,063		
Итого:	8,657	9,107	9,107	9,107	9,107	9,107	9,107	0,424		

Максимальное значение годового количества образования отхода составит 9,107 т/год.

1.97 Отходы минеральных масел гидравлических, не содержащих галогены (4 06 120 01 31 3)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.13. Увеличение использования минеральных масел гидравлических на предприятии на планируется. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.13.1.

Таблица 5.13.1- Результаты расчета годового образования отхода

П.,			Годовое	образован	ние отхода,	, т/год		
Цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
ЛПЦ	0,640	0,673	0,673	0,673	0,673	0,673	0,673	0,031
Варочный цех	0,114	0,12	0,12	0,12	0,12	0,12	0,12	0,006
Химкорпус	0,236	0,248	0,248	0,248	0,248	0,248	0,248	0,012
Бумажная фабрика	8,576	9,021	9,021	9,021	9,021	9,021	9,021	0,420
СБО	0,137	0,144	0,144	0,144	0,144	0,144	0,144	0,007
АТЦ	1,944	2,045	2,045	2,045	2,045	2,045	2,045	0,095
Складское хоз-во	1,571	1,652	1,652	1,652	1,652	1,652	1,652	0,077
Итого:	13,217	13,903	13,903	13,903	13,903	13,903	13,903	0,648

Максимальное значение годового количества образования отхода составит 13,903 т/год.

1.98 Фильтры очистки масла автотранспортных средств отработанные (9 21 302 01 52 3)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.14. Отходы фильтров очистки масла автотранспортных средств образуются в результате замены отработанных масляных фильтров во время ремонта автотранспорта, спецтехники в АТЦ.

Результаты расчета годового образования отхода представлены в таблице 5.14.1

Таблица 5.14.1 – Результаты расчета годового образования отхода

Цех	Годовое образование отхода, т/год								
	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029	
АТЦ	0,052	0,055	0,055	0,055	0,055	0,055	0,055	0,003	

Максимальное значение годового количества образования отхода составит 0,055 т/год.

1.99 Сальниковая набивка асбесто-графитовая промасленная (содержание масла 15 % и более)

(9 19 202 01 60 3)

Расчет годового образования отхода произведен в соответствии с нормой образования отхода определенным в п. 4.15. и графиком ремонта основного оборудования (приложение 1, стр.).

Расчет годового образования отхода по подразделениям представлено в таблице 5.15.1

Таблица 5.15.1 – Результаты расчета годового образования отход

	Образова-	Коли	чество ремонт	гов, шт.	Норматив	образова т/год	ния отхода,			
Цех	ние отхода, кг/ремонт	c 18.01.2022	2022-2028	по 17.01.2029	c 18.01.2022	2022- 2028	по 17.01.2029			
ЛПЦ	0,188				0,045	0,047	0,002			
Варочный цех	0,607				0,145	0,152	0,007			
Химкорпус	0,826				0,197	0,207	0,010			
TЭC-2	0,039	239			0,009	0,01	0,000			
ЦРТМ	0,064				0,015	0,016	0,001			
Бумажная фаб- рика	0,307		251 12	12	0,073	0,077	0,004			
ТЭЦ-1	0,137				0,033	0,034	0,002			
ЦГП	0,107				0,026	0,027	0,001			
ждц	0,046				0,011	0,011	0,001			
СБО	0,493				0,118	0,124	0,006			
	Итого: 0,673 0,706 0,034									

Максимальное значение годового количества образования отхода составит 0,706 т/год.

1.100 Фильтры очистки топлива автотранспортных средств отработанные (9 21 303 01 52 3)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.16. Отходы фильтров очистки топлива автотранспортных средств образуются в результате замены отработанных топливных фильтров во время ремонта автотранспорта и спецтехники в АТЦ. Результаты расчета годового образования отхода представлены в таблице 5.16.1.

Таблица 5.16.1 – Результаты расчета годового образования отхода

Hay	Годовое образование отхода, т/год							
Цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
АТЦ	0,066	0,069	0,069	0,069	0,069	0,069	0,069	0,003

Максимальное значение годового количества образования отхода составит 0,069 т/год.

1.101 Опилки и стружка древесные, загрязненные нефтью или нефтепродуктами (содержание нефти или нефтепродуктов 15% и более) (9 19 205 01 39 3)

На предприятии не планируется увеличение использования нефтепродуктов, в результате ликвидации проливов которых образуется данный вид отхода. Расчет годового образования отхода произведен в соответствии с нормативом образования отхода, определенным в п. 4.17. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.17.1.

Таблица 5.17.1 – Результаты расчета годового образования отхода

			Годовое	образова:	ние отхода	ı, т/год		
Цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
ЛПЦ	0,040	0,042	0,042	0,042	0,042	0,042	0,042	0,002
Варочный цех	0,008	0,008	0,008	0,008	0,008	0,008	0,008	0,000
Химкорпус	0,023	0,024	0,024	0,024	0,024	0,024	0,024	0,001
TЭC-2	0,034	0,036	0,036	0,036	0,036	0,036	0,036	0,002
ЦРТМ	0,063	0,066	0,066	0,066	0,066	0,066	0,066	0,003
Бумажная фабрика	0,183	0,192	0,192	0,192	0,192	0,192	0,192	0,009
ТЭЦ-1	0,016	0,017	0,017	0,017	0,017	0,017	0,017	0,001
СБО	0,012	0,013	0,013	0,013	0,013	0,013	0,013	0,001
АТЦ	0,067	0,071	0,071	0,071	0,071	0,071	0,071	0,003
ждц	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,000
РМЦ	0,006	0,006	0,006	0,006	0,006	0,006	0,006	0,000
РСУ	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
ЦРО	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,000
ЦГП	0,016	0,017	0,017	0,017	0,017	0,017	0,017	0,001
Итого:	0,477	0,502	0,502	0,502	0,502	0,502	0,502	0,023

Максимальное значение годового количества образования отхода составит 0,502 т/год.

1.102 Всплывшие нефтепродукты из нефтеловушек и аналогичных сооружений (4 06 350 01 31 3)

Отход образуется в цехе ТЭЦ-1 при работе комплексной системы очистки (ОП-БМО) «Байкал». Расчет годового образования отхода произведен в соответствии с нормативом образования

отхода определенным в п. 4.18. Результаты расчета годового образования отхода представлены в таблине 5.18.1.

Таблица 5.18.1 – Результаты расчета годового образования отхода

Цех	Годовое образование отхода, т/год							
цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
ТЭЦ-1	0,510	0,536	0,536	0,536	0,536	0,536	0,536	0,025

Максимальное значение годового количества образования отхода составит 0,536 т/год.

1.103 Фильтры очистки масла компрессорных установок отработанные (содержание нефтепродуктов 15% и более) (9 18 302 81 52 3)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.19. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.19.1.

Таблица 5.19.1 – Результаты расчета годового образования отхода

II.a	Годовое образование отхода, т/год									
Цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029		
XBO	0,039	0,041	0,041	0,041	0,041	0,041	0,041	0,002		
СБО	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,000		
Итого:	0,040	0,042	0,042	0,042	0,042	0,042	0,042	0,002		

Максимальное значение годового количества образования отхода составит 0,042 т/год.

1.104 Фильтры очистки масла двигателей железнодорожного подвижного состава отработанные

(9 22 221 05 52 3)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.20. Результаты расчета годового образования отхода представлены в таблице 5.20.1.

Таблица 5.20.1 – Результаты расчета годового образования отхода

Пот		Годовое образование отхода, т/год						
Цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
ждц	0,918	0,966	0,966	0,966	0,966	0,966	0,966	0,045

Максимальное значение годового количества образования отхода составит 0,966 т/год.

1.105 Фильтры очистки топлива двигателей железнодорожного подвижного состава отработанные (9 22 221 07 52 3)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.21. Результаты расчета годового образования отхода представлены в таблице 5.21.1.

Таблица 5.21.1 – Результаты расчета годового образования отхода

Пот	Годовое образование отхода, т/год							
Цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
ждц	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,0002

Максимальное значение годового количества образования отхода составит 0,004 т/год.

1.106 Сетки сушильные и формующие полиэфирные бумагоделательных машин, утратившие потребительские свойства (3 06 121 91 51 4)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.22. Результаты расчета годового образования отхода представлены в таблице 5.22.1.

Таблица 5.22.1 – Результаты расчета годового образования отхода

Цех		Годовое образование отхода, т/год										
	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029				
ЛПП	1,969 2,071 2,071 2,071 2,071 2,071 0,0965											

Максимальное значение годового количества образования отхода составит 2,071 т/год.

1.107 Фильтры воздушные автотранспортных средств отработанные (9 18 905 11 52 4) Расчет годового образования отхода произведен в соответствии с нормативом образования

отхода определенным в п. 4.23. Результаты расчета годового образования отхода представлены в таблице 5.23.1.

Таблица 5.23.1 – Результаты расчета годового образования отхода

Цех		Годовое образование отхода, т/год										
	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029				
АТЦ	0,116	0,122	0,122	0,122	0,122	0,122	0,122	0,006				

Максимальное значение годового количества образования отхода составит 0,122 т/год.

1.108 Фильтры воздушные двигателей железнодорожного подвижного состава отработанные

(9 22 221 02 52 4)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.24. Результаты расчета годового образования отхода представлены в таблице 5.24.1.

Таблица 5.24.1 – Результаты расчета годового образования отхода

Цех		Годовое образование отхода, т/год										
	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029				
ЖДЦ	0,100	0,105	0,105	0,105	0,105	0,105	0,105	0,005				

Максимальное значение годового количества образования отхода составит 0,105 т/год.

1.109 Фильтры воздушные компрессорных установок в полимерном корпусе отработанные

(9 18 302 66 52 4)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.25. Результаты расчета годового образования отхода представлены в таблице 5.25.1.

Таблица 5.25.1 – Результаты расчета годового образования отхода

Годовое образование отхода, т/год										
с 18.01.2022 2023 2024 2025 2026 2027 2028 по 17.01.2029										
0,001 0,001 0,001 0,001 0,001 0,001 0,000										

Максимальное значение годового количества образования отхода составит 0,001 т/год.

1.110 Обувь кожаная рабочая, утратившая потребительские свойства (4 03 101 00 52 4)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.26. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.26.1.

Таблица 5.26.1 – Результаты расчета годового образования отхода

П			Годово	е образова	ние отхода	а, т/год		
Цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
ЛПП	0,264	0,278	0,278	0,278	0,278	0,278	0,278	0,013
Варочный цех	0,058	0,061	0,061	0,061	0,061	0,061	0,061	0,003
Химкорпус	0,115	0,121	0,121	0,121	0,121	0,121	0,121	0,006
ЦРТМ	0,069	0,072	0,072	0,072	0,072	0,072	0,072	0,003
T9C-2	0,099	0,104	0,104	0,104	0,104	0,104	0,104	0,005
Бумажная фаб- рика	0,318	0,335	0,335	0,335	0,335	0,335	0,335	0,016
ТЭЦ-1	0,236	0,248	0,248	0,248	0,248	0,248	0,248	0,012
XBO	0,037	0,039	0,039	0,039	0,039	0,039	0,039	0,002
АТЦ	0,064	0,067	0,067	0,067	0,067	0,067	0,067	0,003
ждц	0,073	0,077	0,077	0,077	0,077	0,077	0,077	0,004
Склад ГСМ и АЗС, мазутное хозяйство;	0,017	0,018	0,018	0,018	0,018	0,018	0,018	0,001
РМЦ	0,032	0,034	0,034	0,034	0,034	0,034	0,034	0,002
РСУ	0,025	0,027	0,027	0,027	0,027	0,027	0,027	0,001
ЦРО	0,048	0,050	0,050	0,050	0,050	0,050	0,050	0,002
КИПиА	0,063	0,066	0,066	0,066	0,066	0,066	0,066	0,003
ЦГП	0,150	0,157	0,157	0,157	0,157	0,157	0,157	0,007
СКК	0,098	0,103	0,103	0,103	0,103	0,103	0,103	0,005
СПЛ	0,015	0,015	0,015	0,015	0,015	0,015	0,015	0,001
Заводоуправление	0,189	0,199	0,199	0,199	0,199	0,199	0,199	0,009
СБО	0,093	0,098	0,098	0,098	0,098	0,098	0,098	0,005
Итого:	2,086	2,194	2,194	2,194	2,194	2,194	2,194	0,102

Максимальное значение годового количества образования отхода составит 2,194 т/год.

- 1.111 Щепа натуральной чистой древесины (3 05 220 03 21 5);
- 1.112 Опилки натуральной чистой древесины (3 05 230 01 43 5);
- 1.113 Прочие несортированные древесные отходы из натуральной чистой древесины (3 05 291 91 20 5);
- 1.114 Отходы коры (3 05 100 01 21 4);
- 1.115 Кора с примесью земли (3 05 100 02 29 4)

Расчет годового образования отходов произведен в соответствии с нормативами образования отхода определенными в п. 4.27—4.31. Исходные данные для расчета годового образования отхода представлены в таблице 5.31.1.

Таблица 5.31.1 – Исходные данные для расчета

Наименование сырья	Ед. изм.	c 18.01.2022	2022-2028	по 17.01.2029
Древесное сырье на варку целлюлозы в пересчете на балансы окоренные 1-3 сорта	тыс. пл. м ³	1543,247	1623,300	75,606
Целлюлоза по варке	тыс. тонн	326,275	343,200	15,985
Из них:				
Баланс	тыс. пл. м ³	1154,987	1214,900	56,584
Привозная щепа	тыс. пл. м ³	388,260	408,400	19,021
Покупное топливное сырье	тыс. пл. м ³	443,970	467,000	21,751

Содержание коры при окорке баланса 8%.

Количество отходов, образующихся при окорке и распиловке составляет 1,9%

Количество отходов, образующихся при рубке и сортировании составляет 3%

Количество отходов, образованных при сортировании щепы составляет 4%

Доставка Ж/Д транспортом коротья:

Количество древесины в одном вагоне: 55 тыс. пл. м³.

Количество отходов обшивки вагонов -0.5 т с 1 вагона

Количество проволоки – 0,11 т с 1 вагона

Количество металлических включений – 0,003 т с 1 вагона

Доставка Ж/Д транспортом длинника:

Количество древесины в одном вагоне: 60 тыс. пл. м³

Количество отходов обшивки вагонов -0.15 т с 1 вагона

Количество отходов коры с примесью земли -0.25 т с 1 вагона

Количество металлических включений – 0,001 т с 1 вагона

Результаты расчета годового образования отхода по подразделениям представлены в таблице

5.31.2.

Таблица 5.31.2 – Результаты расчета

Наименование показателя	Ед. изм.	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
Древесное сырье на варку целлюлозы в пересчете	тыс. пл. м ³	1543,247	1623,300	1623,300	1623,300	1623,300	1623,300	1623,300	75,606
на балансы окоренные 1-3 сорта	тыс. пл. м	1343,247	1023,300	1023,300	1023,300	1023,300	1023,300	1023,300	73,000
Целлюлоза по варке	тыс. тонн	326,275	343,200	343,200	343,200	343,200	343,200	343,200	15,985
Из них									
Баланс	тыс. пл. м ³	1154,987	1214,900	1214,900	1214,900	1214,900	1214,900	1214,900	56,584
Привозная щепа	тыс. пл. м ³	388,260	408,400	408,400	408,400	408,400	408,400	408,400	19,021
Покупное топливное сырье	тыс. пл. м ³	443,970	467,000	467,000	467,000	467,000	467,000	467,000	21,751
Количество неокоренного древесного сырья, по-	тыс. пл. м ³	1255,421	1320,543	1320,543	1320,543	1320,543	1320,543	1320,543	61,505
ступающего на распиловку и окорку	TBIC. H31. W	1233,721	1320,343	1320,343	1320,343	1320,343	1320,343	1320,343	01,505
Количество коры при окорке баланса	тыс. пл. м ³	100,434	105,643	105,643	105,643	105,643	105,643	105,643	4,920
Количество окоренной древесины	тыс. пл. м ³	1054,553	1109,257	1109,257	1109,257	1109,257	1109,257	1109,257	51,664
Количество отходов, образующихся при окорке	тыс. пл. м ³	21,945	23,083	23,083	23,083	23,083	23,083	23,083	1,075
(древесина в укоре) и распиловке	TBIC. IIJI. W	21,743	25,005	25,005	25,005	25,005	25,005	25,005	1,073
Количество сырья поступившего на рубку и распиловку	тыс. пл. м ³	1133,042	1191,817	1191,817	1191,817	1191,817	1191,817	1191,817	55,509
Количество отходов, образующихся при рубке и									
сортировании	тыс. пл. м ³	33,991	35,755	35,755	35,755	35,755	35,755	35,755	1,665
Количество отходов, образованных при сортиро-	тыс. пл. м ³	15,530	16,336	16,336	16,336	16,336	16,336	16,336	0,761
вании щепы	TEIC. IIJI. M	13,330	10,330	10,550	10,330	10,550	10,550	10,330	0,701
Итого отходов от сортировок и привозной щепы и	тыс. пл. м ³	49,522	52,091	52,091	52,091	52,091	52,091	52,091	2,426
собственной щепы)	Three first w	19,322	32,071	32,071	32,071	32,071	32,071	32,071	2,120
Из них			1	ı	ı	ı	ı	ı	1
От отходов сортирования привозной щепы 40%	тыс. пл. м ³	6,212	6,534	6,534	6,534	6,534	6,534	6,534	0,304
составляет мелкая фракция			,	*		,	,		-
Остальное опилки	тыс. пл. м ³	43,310	45,556	45,556	45,556	45,556	45,556	45,556	2,122
Итого:		100.050	100 -0-	120 -2-	100 -0-	100 -0-	100 -0-	100 -0-	
Отходы коры и древесины в укоре	тыс. пл. м ³	122,378	128,727	128,727	128,727	128,727	128,727	128,727	5,995
Отходы щепы	тыс. пл. м ³	6,212	6,534	6,534	6,534	6,534	6,534	6,534	0,304
Отходы опилок	тыс. пл. м ³	43,310	45,556	45,556	45,556	45,556	45,556	45,556	2,122
Общий расход баланса	тыс. пл. м ³	1699,391	1787,543	1787,543	1787,543	1787,543	1787,543	1787,543	83,255
Из них:		_	T	T	T	T	T	T	1
Длинник (94%)	тыс. пл. м ³	1597,427	1680,291	1680,291	1680,291	1680,291	1680,291	1680,291	78,260
Коротье (6%)	тыс. пл. м ³	101,963	107,253	107,253	107,253	107,253	107,253	107,253	4,995
Привозная щепа	тыс. пл. м ³	388,260	408,400	408,400	408,400	408,400	408,400	408,400	19,021
Поступление коротья:			T	T	T			T	_
Ж/д транспортом поступает 33% сырья	тыс. пл. м ³	33,65	35,39	35,39	35,39	35,39	35,39	35,39	1,65
Количество вагонов с коротьем	шт.	612	644	644	644	644	644	644	30
Количество отходов обшивки вагонов	тонн	305,890	321,758	321,758	321,758	321,758	321,758	321,758	14,986

Наименование показателя	Ед. изм.	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
Количество проволоки	тонн	67,296	70,787	70,787	70,787	70,787	70,787	70,787	3,297
Отходы металла	тонн	1,835	1,931	1,931	1,931	1,931	1,931	1,931	0,090
Поступление длинника:									
Количество вагонов с коротьем	шт.	8786	9242	9242	9242	9242	9242	9242	430
Количество отходов обшивки вагонов	тонн	1317,877	1386,240	1386,240	1386,240	1386,240	1386,240	1386,240	64,565
Отходы металла	тонн	8,786	9,242	9,242	9,242	9,242	9,242	9,242	0,430
Общее количество вагонов с сырьем в год	шт.	8786	9242	9242	9242	9242	9242	9242	430
Объем отходов коры с примесью земли от всех вагонов	M ³	2349,408	2471,279	2471,279	2471,279	2471,279	2471,279	2471,279	115,101
Количество отходов коры с примесью земли от всех вагонов	тонн	1762,056	1853,459	1853,459	1853,459	1853,459	1853,459	1853,459	86,325

Расчет максимального образования отхода Опилки натуральной древесины от цеха РСУ представлен в таблице 5.31.3

Таблица 5.31.3 – Максимальное образование отхода опилки натуральной древесины от цеха РСУ

Цех		Годовое образование отхода, т/год										
	цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029			
	РСУ	0,095	0,100	0,100	0,100	0,100	0,100	0,100	0,00002			

Таблица 5.31.4 – Сводная таблица расчета годового образования отходов

Иомисиорамиа одугата			Годо	овое образова	ние отхода, т/і	год		
Наименование отхода	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
Отходы коры	111241,982	117012,460	117012,460	117012,460	117012,460	117012,460	117012,460	5449,895
Щепа натуральной чистой древесины	5646,849	5939,770	5939,770	5939,770	5939,770	5939,770	5939,770	276,647
Опилки натуральной чистой древесины	39368,435	41410,601	41410,601	41410,601	41410,601	41410,601	41410,601	1928,708
Прочие несортированные древесные отходы из натуральной чистой древесины	1623,768	1707,998	1707,998	1707,998	1707,998	1707,998	1707,998	79,551
Лом и отходы, содержащие незагрязненные черные металлы в виде изделий, кусков, несортированные	10,621	11,172	11,172	11,172	11,172	11,172	11,172	0,520
Лом и отходы стальные несортированные	67,296	70,787	70,787	70,787	70,787	70,787	70,787	3,297
Кора с примесью земли	1762,056	1853,459	1853,459	1853,459	1853,459	1853,459	1853,459	86,325

1.116 Древесные отходы от сноса и разборки зданий (8 12 101 01 72 4)

Расчет годового образования отхода произведен в соответствии с Ведомостям объемов работ по сносу зданий и сооружений, представленным в Приложении 1 на стр. 542-546. Норма образования отхода принята 100% в соответствии Правилами разработки и применения нормативов трудноустранимых потерь и отходов материалов в строительстве. РДС-82-202-96. Результаты расчета годового образования отхода представлены в таблице 5.32.1.

Таблица 5.32.1- Результаты расчета годового образования отхода

	Норма	Норм	атив образова	ния отхода, т	/год
Объект	образования отхода, %	2022	2023	2024-2028	по 17.01.2029
Здание трансформаторной станции ТП №4	100	44,020	44,020		
Склад известкового камня, галерея подачи известняка печи обжига	100			0,431	0,014
Здание натяжной станции конвейера	100	112,680			
Здание цеха глиноземоразводки	100		167,976	167,976	5,522
	Итого:	156,700	211,996	168,407	5,536

Максимальное значение годового количества образования отхода составит 211,996 т/год.

1.117 Осадок гашения извести при производстве известкового молока (3 46 910 01 39 4)

Отход образуется в Химкорпусе. Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.33. Результаты расчета годового образования отхода представлены в таблице 5.33.1.

Таблица 5.33.1- Результаты расчета годового образования отхода

	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
Выработка целлюлозы, т/год	326275,068	343200	343200	343200	343200	343200	343200	15984,658
Годовое образование от- хода, т/год	4552,206	4788,344	4788,344	4788,344	4788,344	4788,344	4788,344	223,019

Максимальное значение годового количества образования отхода составит 4788,344 т/год.

1.118 Отходы рубероида (8 26 21 001 51 4)

Расчет годового образования отхода произведен в соответствии с Ведомостям объемов работ по сносу зданий и сооружений, представленным в Приложении 1 на стр. 542-546. Норма образования отхода принята 100% в соответствии Правилами разработки и применения нормативов трудноустранимых потерь и отходов материалов в строительстве. РДС-82-202-96. Результаты расчета годового образования отхода представлены в таблице 5.34.1.

Таблица 5.34.1- Результаты расчета годового образования отхода

	Норма	Норма	атив образ	ования отход	ца, т/год
Объект	образования отхода, %	2022	2023	2024-2028	по 17.01.2029

Здание трансформаторной станции ТП №4	100	38,297	38,297		
Склад известкового камня, галерея подачи извести на печи обжига	100			0,417	0,014
Здание цеха глиноземоразводки	100		33,829	33,829	1,112
	Итого:	38,297	72,126	34,246	1,126

Максимальное значение годового количества образования отхода составит 72,126 т/год.

1.119 Золосажевые отложения при очистке оборудования ТЭС, ТЭЦ, котельных малоопасные

(6 18 902 02 20 4)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.35. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.35.1.

Таблица 5.35.1 – Результаты расчета годового образования отхода

Цех		Годовое образование отхода, т/год						
	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
ТЭЦ-1	269,702	283,692	283,692	283,692	283,692	283,692	283,692	13,213
ЦРТМ	1,098	1,155	1,155	1,155	1,155	1,155	1,155	0,054
Итого:	270,800	284,847	284,847	284,847	284,847	284,847	284,847	13,267

Максимальное значение годового количества образования отхода составит 284,847 т/год.

1.120 Пыль (порошок) абразивные от шлифования черных металлов с содержанием металла менее 50 % (3 61 221 02 42 4)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.36. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.36.1.

Таблица 5.36.1 – Результаты расчета годового образования отхода

Цех			Годовое	образова	ние отход	а, т/год		
	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
РМЦ	0,314	0,330	0,330	0,330	0,330	0,330	0,330	0,015
Химкорпус	0,127	0,134	0,134	0,134	0,134	0,134	0,134	0,006
Варочный цех	0,079	0,083	0,083	0,083	0,083	0,083	0,083	0,004
ТЭС-2	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
ТЭЦ-1	0,104	0,109	0,109	0,109	0,109	0,109	0,109	0,005
лпц	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
ЦРТМ	0,048	0,051	0,051	0,051	0,051	0,051	0,051	0,002
Бумажная фабрика	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
АТЦ	0,000	0,000	0,000	0,000	0,000	0,000	0,000	0,000
ждц	0,038	0,040	0,040	0,040	0,040	0,040	0,040	0,002
ЦРО	0,061	0,064	0,064	0,064	0,064	0,064	0,064	0,003
СБО	0,050	0,053	0,053	0,053	0,053	0,053	0,053	0,002
Итого:	0,819	0,862	0,862	0,862	0,862	0,862	0,862	0,040

Максимальное значение годового количества образования отхода составит 0,862 т/год.

1.121 Отходы базальтового волокна и материалов на его основе (4 57 112 01 20 4)

Расчет годового образования отхода произведен в соответствии с нормой образования отхода определенной в п. 4.37. и графиком ремонта основного оборудования (Приложение 1, стр. 533-541).

Расчет годового образования отхода представлено в таблице 5.37.1

Таблица 5.37.1 – Результаты расчета годового образования отход

	Образование	Количес	тво ремонто	з, шт.	Норматив об	разования от	хода, т/год
Цех	отхода, кг/ре- монт	c 18.01.2022	2022-2028	по 17.01.2029	c 18.01.2022	2022-2028	по 17.01.2029
Химкор- пус	0,363				0,087	0,091	0,004
ТЭС-2	10,997				2,628	2,760	0,132
Бумаж- ная фаб- рика	1,027	239	251	12	0,245	0,258	0,012
ТЭЦ-1	6,640				1,587	1,667	0,080
ЦГП	6,806				1,627	1,708	0,082
ЦРТМ	3,512				0,839	0,881	0,042
РСУ	0,386				0,092	0,096	0,005
				Итого:	7,094	7,462	0,348

Максимальное значение годового количества образования отхода составит 7,462 т/год.

1.122 Резиновые перчатки, утратившие потребительские свойства, незагрязненные (4 31 14 101 20 4)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.38. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.38.1.

Таблица 5.38.1 – Результаты расчета годового образования отхода

Цех		Γ	одовое об	бразован	ие отход	а, т/год		
	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
ЛПП	0,154	0,162	0,162	0,162	0,162	0,162	0,162	0,008
Варочный цех	0,035	0,037	0,037	0,037	0,037	0,037	0,037	0,002
Химкорпус	0,069	0,073	0,073	0,073	0,073	0,073	0,073	0,003
ЦРТМ	0,040	0,043	0,043	0,043	0,043	0,043	0,043	0,002
T9C-2	0,059	0,062	0,062	0,062	0,062	0,062	0,062	0,003
Бумажная фаб- рика	0,175	0,185	0,185	0,185	0,185	0,185	0,185	0,009
ТЭЦ-1	0,138	0,145	0,145	0,145	0,145	0,145	0,145	0,007
XBO	0,022	0,023	0,023	0,023	0,023	0,023	0,023	0,001
АТЦ	0,038	0,040	0,040	0,040	0,040	0,040	0,040	0,002
ждц	0,041	0,043	0,043	0,043	0,043	0,043	0,043	0,002
ГСМ и АЗС, ма- зутное хоз-во;	0,010	0,011	0,011	0,011	0,011	0,011	0,011	0,000
РМЦ	0,019	0,020	0,020	0,020	0,020	0,020	0,020	0,001
РСУ	0,011	0,011	0,011	0,011	0,011	0,011	0,011	0,001
ЦРО	0,028	0,030	0,030	0,030	0,030	0,030	0,030	0,001
КИПиА	0,025	0,026	0,026	0,026	0,026	0,026	0,026	0,001
ЦГП	0,066	0,070	0,070	0,070	0,070	0,070	0,070	0,003
СКК	0,034	0,036	0,036	0,036	0,036	0,036	0,036	0,002
СПЛ	0,007	0,008	0,008	0,008	0,008	0,008	0,008	0,000

Заводоуправление	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,000
СБО	0,044	0,046	0,046	0,046	0,046	0,046	0,046	0,002
Итого:	1,018	1,071	1,071	1,071	1,071	1,071	1,071	0,050

Максимальное значение годового количества образования отхода составит 1,071 т/год.

1.123 Отходы асбеста в кусковой форме (3 48 511 01 20 4)

Расчет годового образования отхода произведен в соответствии с нормой образования отхода определенной в п. 4.39 и графиком ремонта основного оборудования (Приложение 1, стр. 533-541).

Расчет годового образования отхода представлено в таблице 5.39.1

Таблица 5.39.1 – Результаты расчета годового образования отход

	Образова-	Количес	ство ремонтов	, шт./год	Норматив о	Норматив образования отхода, т/год			
Цех	ние отхода, кг/ремонт	c 18.01.2022	2023-2028	по 17.01.2029	c 18.01.2022	2023-2028	по 17.01.2029		
ТЭЦ-1	19,479				4,655	4,889	0,234		
Химкорпус	0,061	239	251	12	0,015	0,015	0,001		
ТЭС-2	1,837	239	231	12	0,439	0,461	0,022		
ЦТП	10,077				2,408	2,529	0,121		
				Итого:	7,505	7,894	0,368		

Максимальное значение годового количества образования отхода составит 7,894 т/год.

1.124 Шлак сварочный (9 19 100 02 20 4)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.40. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.40.1.

Таблица 5.40.1- Результаты расчета годового образования отхода

			Годовое	образован	ие отхода	, т/год		
Цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
ЛПЦ	0,012	0,013	0,013	0,013	0,013	0,013	0,013	0,001
Химкорпус	0,074	0,078	0,078	0,078	0,078	0,078	0,078	0,004
ТЭС-2	0,060	0,063	0,063	0,063	0,063	0,063	0,063	0,003
ЦРТМ	0,007	0,007	0,007	0,007	0,007	0,007	0,007	0,000
Бумажная фабрика	0,032	0,034	0,034	0,034	0,034	0,034	0,034	0,002
ТЭЦ-1	0,036	0,038	0,038	0,038	0,038	0,038	0,038	0,002
АТЦ	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,000
ждц	0,010	0,011	0,011	0,011	0,011	0,011	0,011	0,001
РМЦ	0,026	0,027	0,027	0,027	0,027	0,027	0,027	0,001
ЦРО	0,070	0,074	0,074	0,074	0,074	0,074	0,074	0,003
СБО	0,014	0,015	0,015	0,015	0,015	0,015	0,015	0,001
Итого:	0,350	0,368	0,368	0,368	0,368	0,368	0,368	0,017

Максимальное значение годового количества образования отхода составит 0,368 т/год.

1.125 Отходы зачистки емкостей хранения, приготовления растворов реагентов (коагулянтов) на основе соединений алюминия (7 10 207 21 39 4)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.41. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.41.1.

Таблица 5.41.1- Результаты расчета годового образования отхода

		Годовое образование отхода, т/год						
	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
Выработка цел- люлозы, т/год	326275,068	343200	343200	343200	343200	343200	343200	15984,658
Годовое образование отхода, т/год	26,574	27,952	27,952	27,952	27,952	27,952	27,952	1,302

Максимальное значение годового количества образования отхода составит 27,952 т/год.

1.126 Смет с территории предприятия малоопасный (7 33 390 01 71 4)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.42. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.42.1.

Таблица 5.42.1- Результаты расчета годового образования отхода

			Годовое	образова	ние отход	а, т/год		
Цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
ЛПЦ	26,239	27,600	27,600	27,600	27,600	27,600	27,600	1,285
Варочный цех	2,852	3,000	3,000	3,000	3,000	3,000	3,000	0,140
Химкорпус	11,617	12,220	12,220	12,220	12,220	12,220	12,220	0,569
Бумажная фабрика	13,690	14,400	14,400	14,400	14,400	14,400	14,400	0,671
ТЭЦ-1	10,553	11,100	11,100	11,100	11,100	11,100	11,100	0,517
СБО	9,507	10,000	10,000	10,000	10,000	10,000	10,000	0,466
АТЦ	4,753	5,000	5,000	5,000	5,000	5,000	5,000	0,233
ждц	0,761	0,800	0,800	0,800	0,800	0,800	0,800	0,037
Склад ГСМ и АЗС	0,095	0,100	0,100	0,100	0,100	0,100	0,100	0,005
РМЦ	0,532	0,560	0,560	0,560	0,560	0,560	0,560	0,026
РСУ	2,852	3,000	3,000	3,000	3,000	3,000	3,000	0,140
ЦРО	0,190	0,200	0,200	0,200	0,200	0,200	0,200	0,009
КИПиА	0,475	0,500	0,500	0,500	0,500	0,500	0,500	0,023
ЦГП	8,100	8,520	8,520	8,520	8,520	8,520	8,520	0,397
Заводоуправление	23,767	25,000	25,000	25,000	25,000	25,000	25,000	1,164
Вневедомственная охрана	1,426	1,500	1,500	1,500	1,500	1,500	1,500	0,070
Итого:	117,410	123,500	123,500	123,500	123,500	123,500	123,500	5,752

Максимальное значение годового количества образования отхода составит 123,500 т/год.

1.127 Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15 %) (9 19 204 02 60 4)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.43. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.43.1.

Таблица 5.43.1- Результаты расчета годового образования отхода

Цех	Годовое образование отхода, т/год
-----	-----------------------------------

	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
ЛПП	0,125	0,132	0,132	0,132	0,132	0,132	0,132	0,006
Варочный цех	0,214	0,225	0,225	0,225	0,225	0,225	0,225	0,010
Химкорпус	0,214	0,225	0,225	0,225	0,225	0,225	0,225	0,010
T9C-2	0,206	0,217	0,217	0,217	0,217	0,217	0,217	0,010
ЦРТМ	0,092	0,097	0,097	0,097	0,097	0,097	0,097	0,005
Бумажная фабрика	1,178	1,239	1,239	1,239	1,239	1,239	1,239	0,058
ТЭЦ-1	0,577	0,607	0,607	0,607	0,607	0,607	0,607	0,028
АТЦ	0,055	0,058	0,058	0,058	0,058	0,058	0,058	0,003
ждц	0,169	0,178	0,178	0,178	0,178	0,178	0,178	0,008
РМЦ	0,037	0,039	0,039	0,039	0,039	0,039	0,039	0,002
РСУ	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,000
ЦРО	0,098	0,103	0,103	0,103	0,103	0,103	0,103	0,005
КИПиА	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,000
ЦГП	0,014	0,015	0,015	0,015	0,015	0,015	0,015	0,001
СБО	0,132	0,139	0,139	0,139	0,139	0,139	0,139	0,006
Итого:	3,119	3,280	3,280	3,280	3,280	3,280	3,280	0,153

Максимальное значение годового количества образования отхода составит 3,280 т/год.

1.128 Тара из черных металлов, загрязненная лакокрасочными материалами (содержание менее 5%) (4 68 112 02 51 4)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.44. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.44.1.

Таблица 5.44.1- Результаты расчета годового образования отхода

Цех		Годовое образование отхода, т/год										
	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029				
ТЭС-2	0,043	0,045	0,045	0,045	0,045	0,045	0,045	0,002				
Бумажная фаб-	0,033	0,035	0,035	0,035	0,035	0,035	0,035	0,002				
рика	0,033	0,033	0,033	0,033	0,033	0,033	0,033	0,002				
ТЭЦ-1	0,018	0,019	0,019	0,019	0,019	0,019	0,019	0,001				
СБО	0,024	0,025	0,025	0,025	0,025	0,025	0,025	0,001				
ждц	0,021	0,022	0,022	0,022	0,022	0,022	0,022	0,001				
РСУ	0,163	0,171	0,171	0,171	0,171	0,171	0,171	0,008				
Итого:	0,300	0,316	0,316	0,316	0,316	0,316	0,316	0,015				

Максимальное значение годового количества образования отхода составит 0,316 т/год.

1.129 Покрышки пневматических шин с металлическим кордом отработанные (9 21 130 02 50 4)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.45. Результаты расчета годового образования отхода представлены в таблице 5.45.1.

Таблица 5.45.1- Результаты расчета годового образования отхода

Цех	Годовое образование отхода, т/год										
цсх	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029			
АТЦ	5,252	5,524	5,524	5,524	5,524	5,524	5,524	0,257			

Максимальное значение годового количества образования отхода составит 5,524 т/год.

1.130 Мусор от офисных и бытовых помещений организаций несортированный (исключая крупногабаритный) (7 33 100 01 72 4)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.46. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.46.1.

Таблица 5.46.1- Результаты расчета годового образования отхода

TI			Годовое	образова	ние отход	а, т/год		
Цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
ЛПЦ	8,518	8,960	8,960	8,960	8,960	8,960	8,960	0,417
Варочный цех	1,863	1,960	1,960	1,960	1,960	1,960	1,960	0,091
Химкорпус	3,689	3,880	3,880	3,880	3,880	3,880	3,880	0,181
T9C-2	3,156	3,320	3,320	3,320	3,320	3,320	3,320	0,155
ЦРТМ	2,206	2,320	2,320	2,320	2,320	2,320	2,320	0,108
Бумажная фабрика	10,420	10,960	10,960	10,960	10,960	10,960	10,960	0,510
ТЭЦ-1	7,605	8,000	8,000	8,000	8,000	8,000	8,000	0,373
XBO	1,179	1,240	1,240	1,240	1,240	1,240	1,240	0,058
АТЦ	2,053	2,160	2,160	2,160	2,160	2,160	2,160	0,101
ждц	2,396	2,520	2,520	2,520	2,520	2,520	2,520	0,117
Склад ГСМ и АЗС,	0.522	0,560	0.560	0.560	0,560	0,560	0,560	0,026
мазутное хозяйство;	0,532	0,300	0,560	0,560	0,300	0,300	0,300	0,020
РМЦ	1,027	1,080	1,080	1,080	1,080	1,080	1,080	0,050
РСУ	0,875	0,920	0,920	0,920	0,920	0,920	0,920	0,043
ЦРО	1,521	1,600	1,600	1,600	1,600	1,600	1,600	0,075
КИПиА	2,206	2,320	2,320	2,320	2,320	2,320	2,320	0,108
ЦГП	5,134	5,400	5,400	5,400	5,400	5,400	5,400	0,252
СКК	3,499	3,680	3,680	3,680	3,680	3,680	3,680	0,171
СПЛ	0,494	0,520	0,520	0,520	0,520	0,520	0,520	0,024
Столовая	0,228	0,240	0,240	0,240	0,240	0,240	0,240	0,011
Медпункт	0,418	0,440	0,440	0,440	0,440	0,440	0,440	0,020
Заводоуправление	7,663	8,060	8,060	8,060	8,060	8,060	8,060	0,375
Вневедомственная	0,190	0,200	0,200	0.200	0,200	0,200	0,200	0,009
охрана	0,190	0,200	0,200	0,200	0,200	0,200	0,200	0,009
СБО	3,156	3,320	3,320	3,320	3,320	3,320	3,320	0,155
Итого:	70,027	73,660	73,660	73,660	73,660	73,660	73,660	3,431

Максимальное значение годового количества образования отхода составит 73,660 т/год.

1.131 Мусор от сноса и разборки зданий несортированный (8 12 901 01 72 4)

Расчет годового образования отхода произведен в соответствии с Ведомостям объемов работ по сносу зданий и сооружений, представленным в Приложении 1 на стр. 542-546. Норма образования отхода принята 100% в соответствии Правилами разработки и применения нормативов трудноустранимых потерь и отходов материалов в строительстве. РДС-82-202-96. Результаты расчета годового образования отхода представлены в таблице 5.47.1.

Таблица 5.47.1- Результаты расчета годового образования отхода

	Норма	Норматив образования отхода, т/год					
Объект	образования отхода, %	2022	2023	2024-2028	по 17.01.2026		
Здание трансформаторной станции ТП №4	100	890,671	890,671				

Склад известкового камня, галерея подачи извести на печи обжига	100			20,132	0,938
Здание натяжной станции конвейера	100	1051,054			
Кирпичная дымовая труба ТЭС-2	100	103,421	103,421	103,421	3,400
Здание цеха глиноземоразводки	100		2330,667	2330,667	108,552
	Итого:	2045,146	3324,759	2454,220	112,890

Максимальное значение годового количества образования отхода составит **3324,759** т/год.

1.132 Отходы упаковочных материалов из бумаги и картона, загрязненные неметаллическими нерастворимыми или малорастворимыми минеральными продуктами (4 05 911 31 60 4)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.48. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.48.1.

Таблица 5.48.1 – Результаты расчета годового образования отхода

	Годовое образование отхода, т/год										
c 18.01.2022	с 18.01.2022 2023 2024 2025 2026 2027 2028 по 17.01.2029										
0,374											

Максимальное значение годового количества образования отхода составит 0,393 т/год.

1.133 Мониторы компьютерные жидкокристаллические, утратившие потребительские свойства (4 81 205 02 52 4)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.49. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.49.1.

Таблица 5.49.1 – Результаты расчета годового образования отхода

	Годовое образование отхода, т/год										
с 18.01.2022 2023 2024 2025 2026 2027 2028 по 17.01.2029											
0,106 0,111 0,111 0,111 0,111 0,111 0,111 0,005											

Максимальное значение годового количества образования отхода составит 0,111 т/год.

1.134 Системный блок компьютера, утративший потребительские свойства (4 81 201 01 52 4)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.50. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.50.1.

Таблица 5.50.1- Результаты расчета годового образования отхода

	Годовое образование отхода, т/год											
с 18.01.2022 2023 2024 2025 2026 2027 2028 по 17.01.2029												
0,067 0,070 0,070 0,070 0,070 0,070 0,070 0,003												

Максимальное значение годового количества образования отхода составит 0.070 т/год.

1.135 Принтеры, сканеры, многофункциональные устройства (МФУ), утратившие потребительские свойства (4 81 202 01 52 4)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.51. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.51.1.

Таблица 5.51.1- Результаты расчета годового образования отхода

	Годовое образование отхода, т/год										
c 18.01.2022	с 18.01.2022 2023 2024 2025 2026 2027 2028 по 17.01.2029										
0,190											

Максимальное значение годового количества образования отхода составит 0,200 т/год.

1.136 Клавиатура, манипулятор «мышь» с соединительными проводами, утратившие потребительские свойства (4 81 204 01 52 4)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.52. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.52.1.

Таблица 5.52.1- Результаты расчета годового образования отхода

	Годовое образование отхода, т/год										
с 18.01.2022 2023 2024 2025 2026 2027 2028 по 17.01.2029											
0,039 0,041 0,041 0,041 0,041 0,041 0,041 0,002											

Максимальное значение годового количества образования отхода составит 0,041 т/год.

1.137 Зола от сжигания древесного топлива умеренно опасная (6 11 900 01 40 4) Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.53. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.53.1.

Таблица 5.53.1 – Результаты расчета годового образования отхода

Цех	Годовое образование отхода, т/год											
цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029				
СБО	10,989	11,559	11,559	11,559	11,559	11,559	11,559	0,538				
ТЭЦ-1	1199,801	1262,039	1262,039	1262,039	1262,039	1262,039	1262,039	58,780				
Итого:	1210,790	1273,598	1273,598	1273,598	1273,598	1273,598	1273,598	59,318				

Максимальное значение годового количества образования отхода составит **1273,598** т/год.

1.138 Лом футеровок печей и печного оборудования производства негашеной извести (9 12 145 41 20 4)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.54. Результаты расчета годового образования отхода представлены в таблице 5.54.1.

Таблица 5.54.1 – Результаты расчета годового образования отхода

Цех	Годовое образование отхода, т/год								
цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029	
Химкорпус	451,102	474,502	474,502	474,502	474,502	474,502	474,502	22,100	

Максимальное значение годового количества образования отхода составит 474,502 т/год.

1.139 Отходы минерального процесса сортирования целлюлозы при ее производстве (3 06 111 12 39 4)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.55. Результаты расчета годового образования отхода представлены в таблице 5.55.1.

Таблица 5.55.1 – Результаты расчета годового образования отхода

		Годовое образование отхода, т/год										
	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029				
Выработка целлю- лозы, т/год	326275,068	343200	343200	343200	343200	343200	343200	15984,658				
Годовое образование отхода, т/год	176,189	185,328	185,328	185,328	185,328	185,328	185,328	8,632				

Максимальное значение годового количества образования отхода составит 185,328 т/год.

1.140 Светильники со светодиодными элементами в сборе, утратившие потребительские свойства (4 82 427 11 52 4)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.56. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.56.1.

Таблица 5.56.1 – Результаты расчета годового образования отхода

Цех	Годовое образование отхода, т/год									
цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029		
ЦРТМ	0,051	0,054	0,054	0,054	0,054	0,054	0,054	0,003		
Бумажная фабрика	0,119	0,125	0,125	0,125	0,125	0,125	0,125	0,006		
ТЭЦ-1	0,034	0,036	0,036	0,036	0,036	0,036	0,036	0,002		
РСУ	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,000		
Заводоуправление	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,000		
Итого:	0,206	0,217	0,217	0,217	0,217	0,217	0,217	0,010		

Максимальное значение годового количества образования отхода составит 0,217 т/год.

1.141 Спецодежда из хлопчатобумажного и смешанных волокон, утратившая потребительские свойства, незагрязненная (4 02 110 01 62 4)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.57. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.57.1.

Таблица 5.57.1 – Результаты расчета годового образования отхода

How		I	Годовое об	бразовани	е отхода,	т/год		
Цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
ЛПП	0,966	1,016	1,016	1,016	1,016	1,016	1,016	0,047
Варочный цех	0,218	0,229	0,229	0,229	0,229	0,229	0,229	0,011
Химкорпус	0,432	0,454	0,454	0,454	0,454	0,454	0,454	0,021
ЦРТМ	0,256	0,269	0,269	0,269	0,269	0,269	0,269	0,013
ТЭС-2	0,369	0,388	0,388	0,388	0,388	0,388	0,388	0,018
Бумажная фабрика	1,141	1,2	1,200	1,200	1,200	1,200	1,200	0,056
ТЭЦ-1	0,873	0,918	0,918	0,918	0,918	0,918	0,918	0,043
XBO	0,138	0,145	0,145	0,145	0,145	0,145	0,145	0,007
АТЦ	0,238	0,25	0,250	0,250	0,250	0,250	0,250	0,012
ждц	0,262	0,276	0,276	0,276	0,276	0,276	0,276	0,013
Склад ГСМ	0,062	0,065	0,065	0,065	0,065	0,065	0,065	0,003
РМЦ	0,120	0,126	0,126	0,126	0,126	0,126	0,126	0,006
РСУ	0,077	0,081	0,081	0,081	0,081	0,081	0,081	0,004

ЦРО	0,178	0,187	0,187	0,187	0,187	0,187	0,187	0,009
КИПиА	0,198	0,208	0,208	0,208	0,208	0,208	0,208	0,010
ЦГП	0,445	0,468	0,468	0,468	0,468	0,468	0,468	0,022
СКК	0,251	0,264	0,264	0,264	0,264	0,264	0,264	0,012
СПЛ	0,050	0,053	0,053	0,053	0,053	0,053	0,053	0,002
Заводоуправление	0,193	0,203	0,203	0,203	0,203	0,203	0,203	0,009
Вневед. охрана	0,008	0,008	0,008	0,008	0,008	0,008	0,008	0,000
СБО	0,294	0,309	0,309	0,309	0,309	0,309	0,309	0,014
Итого:	6,766	7,117	7,117	7,117	7,117	7,117	7,117	0,331

Максимальное значение годового количества образования отхода составит 7,117 т/год.

1.142 Отходы известняка, доломита и мела в виде порошка и пыли малоопасные (2 31 112 03 40 4)

В Химкорпусе из-за просыпи при транспортировании, подготовке и хранении, а также из-за неплотностей оборудования образуется отход, представляющей собой пыль известняка. Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.58. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.58.1.

Таблица 5.58.1- Результаты расчета годового образования отхода

Годовое образование отхода, т/год										
c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029			
109,050	114,707	114,707	114,707	114,707	114,707	114,707	5,343			

Максимальное значение годового количества образования отхода составит 114,707 т/год.

1.143 Отходы (шлам) при очистке сетей, колодцев хозяйственно-бытовой и смешанной канализации (7 22 800 01 39 4)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.59. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.59.1.

Таблица 5.59.1 – Результаты расчета годового образования отхода

Шан			Годовое	образова	ние отход	а, т/год		
Цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
ЛПЦ	0,057	0,060	0,060	0,060	0,060	0,060	0,060	0,003
Варочный цех	0,076	0,080	0,080	0,080	0,080	0,080	0,080	0,004
Химкорпус	0,076	0,080	0,080	0,080	0,080	0,080	0,080	0,004
ЦРТМ	0,038	0,040	0,040	0,040	0,040	0,040	0,040	0,002
ТЭС-2	0,057	0,060	0,060	0,060	0,060	0,060	0,060	0,003
Бумажная фабрика, ЦПХ, СКК	0,114	0,120	0,120	0,120	0,120	0,120	0,120	0,006
ТЭЦ-1, ЦТП	0,095	0,100	0,100	0,100	0,100	0,100	0,100	0,005
XBO	0,057	0,060	0,060	0,060	0,060	0,060	0,060	0,003
АТЦ, Склад ГСМ и АЗС, мазутное хозяйство	0,019	0,020	0,020	0,020	0,020	0,020	0,020	0,001
Итого:	0,589	0,600	0,600	0,600	0,600	0,600	0,600	0,029

Максимальное значение годового количества образования отхода составит 0,600 т/год.

1.144 Ткань фильтровальная из полимерных волокон, загрязненная нерастворимыми или малорастворимыми минеральными веществами (4 43 221 91 60 4)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.60. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.60.1.

Таблица 5.60.1- Результаты расчета годового образования отхода

How	Годовое образование отхода, т/год									
Цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029		
СБО	0,076	0,080	0,080	0,080	0,080	0,080	0,080	0,004		
ЛПП	0,076	0,080	0,080	0,080	0,080	0,080	0,080	0,004		
Итого:	0,152	0,160	0,160	0,160	0,160	0,160	0,160	0,007		

Максимальное значение годового количества образования отхода составит 0,160 т/год.

1.145 Осадок механической очистки нефтесодержащих сточных вод, содержащий нефтепродукты в количестве менее 15% (7 23 102 02 39 4)

Отход образуется в цехе ТЭЦ-1 и ЦРТМ при работе локальных очистных сооружений. Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.61. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.61.1.

Таблица 5.61.1 – Результаты расчета годового образования отхода

Цех	Годовое образование отхода, т/год									
цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029		
ТЭЦ-1	0,240	0,252	0,252	0,252	0,252	0,252	0,252	0,012		
ЦРТМ	17,598	18,511	18,511	18,511	18,511	18,511	18,511	0,862		
Итого:	17,838	18,763	18,763	18,763	18,763	18,763	18,763	0,874		

Максимальное значение годового количества образования отхода составит 18,763 т/год.

1.146 Упаковка полимерная, загрязненная реагентами для производства целлюлозы

(3 06 053 11 51 4)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.62. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.62.1.

Таблица 5.62.1- Результаты расчета годового образования отхода

Цех	Годовое образование отхода, т/год									
цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029		
Варочный цех	10,049	10,57	10,570	10,570	10,570	10,570	10,570	0,492		
Бумажная фабрика	13,077	13,755	13,755	13,755	13,755	13,755	13,755	0,641		
XBO	1,070	1,125	1,125	1,125	1,125	1,125	1,125	0,052		
Итого:	24,195	25,451	25,451	25,451	25,451	25,451	25,451	1,185		

Максимальное значение годового количества образования отхода составит 25,451 т/год.

1.147 Осадок (ил) биологической очистки сточных вод целлюлозно-бумажного про-изводства

(3 06 851 21 32 5)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.63-4.64. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.63.1.

Таблица 5.63.1- Результаты расчета годового образования отхода

	Годовое образование отхода, т/год									
Цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029		
СБО	1254,219	1319,279	1319,279	1319,279	1319,279	1319,279	1319,279	61,446		

Максимальное значение годового количества образования отхода составит **1319,279** т/год.

1.148 Осадки механическое и биологической очистки сточных вод целлюлозно-бумажного производства и хозяйственно-бытовых сточных вод в смеси обезвоженные (3 06 821 11 39 5)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.63-4.64. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.64.1.

Таблица 5.64.1- Результаты расчета годового образования отхода

		Годовое образование отхода, т/год										
Цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029				
СБО	45068,414	47406,257	47406,257	47406,257	47406,257	47406,257	47406,257	2207,963				

Максимальное значение годового количества образования отхода составит **47406,257** т/год.

1.149 Осадок сточных вод мойки автомобильного транспорта практически неопасный

(9 21 751 12 39 5)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.65. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.65.1.

Таблица 5.65.1- Результаты расчета годового образования отхода

Пот		Годовое образование отхода, т/год									
Цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029			
СБО	0,588	0,619	0,619	0,619	0,619	0,619	0,619	0,029			

Максимальное значение годового количества образования отхода составит 0,619 т/год.

1.150 Отходы песчаной загрузки кипящего слоя в смеси с твердыми остатками сжигания кородревесных отходов (7 42 218 31 40 5)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.66. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.66.1.

Таблица 5.66.1 – Результаты расчета годового образования отхода

Цех	Годовое образование отхода, т/год

	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
ТЭЦ-1	845,292	889,140	889,140	889,140	889,140	889,140	889,140	41,412

Максимальное значение годового количества образования отхода составит 889,140 т/год.

1.151 Зола от сжигания древесного топлива практически неопасная (6 11 900 02 40 5)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.67. Результаты расчета годового образования отхода представлены в таблице 5.67.1.

Таблица 5.67.1 – Результаты расчета годового образования отхода

Hov		Годовое образование отхода, т/год										
Цех	х с 18.01.2022 2023 2024 2025 2026 2027 2028 по 17											
ТЭЦ-1	3682,234 3873,243 3873,243 3873,243 3873,243 3873,243 180,398											

Максимальное значение годового количества образования отхода составит **3873,243** т/год.

1.152 Горбыль из натуральной чистой древесины (3 05 220 01 21 5)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.68–4.70. Результаты расчета годового образования отхода представлены в таблице 5.68.1.

Таблица 5.68.1 – Результаты расчета годового образования отхода

Цех	Годовое образование отхода, т/год											
	c 18.01.2022	с 18.01.2022 2023 2024 2025 2026 2027 2028 по 17.01.2029										
РСУ	0,309	0,309										

Максимальное значение годового количества образования отхода составит 0,325 т/год

1.153 Стружка натуральной чистой древесины (3 05 230 02 22 5)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.68–4.70. Результаты расчета годового образования отхода представлены в таблице 5.69.1.

Таблица 5.69.1 – Результаты расчета годового образования отхода

Цех		Годовое образование отхода, т/год										
цех	с 18.01.2022 2023 2024 2025 2026 2027 2028 по 17.01.2											
РСУ	0,139	0,146	0,146	0,146	0,146	0,146	0,146	0,007				

Максимальное значение годового количества образования отхода составит 0,146 т/год

1.154 Пыль древесная от шлифовки натуральной чистой древесины (3 05 311 01 42 4)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.68–4.70. Результаты расчета годового образования отхода представлены в таблице 5.70.1.

Таблица 5.70.1 – Результаты расчета годового образования отхода

How		Годовое образование отхода, т/год										
Цех	с 18.01.2022 2023 2024 2025 2026 2027 2028 по 17.01.2029											
РСУ	0,005	0,005										

Максимальное значение годового количества образования отхода составит 0,005 т/год

1.155 Бой стекла (3 41 901 01 20 5)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.71. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.71.1.

Таблица 5.71.1- Результаты расчета годового образования отхода

Цех		Годовое образование отхода, т/год										
цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029				
РСУ	1,906	2,005	2,005	2,005	2,005	2,005	2,005	0,093				
СПЛ	0,103	0,108	0,108	0,108	0,108	0,108	0,108	0,005				
СКК	0,486	0,511	0,511	0,511	0,511	0,511	0,511	0,024				
Итого:	2,496	2,625	2,625	2,625	2,625	2,625	2,625	0,122				

Максимальное значение годового количества образования отхода составит 2,625 т/год.

1.156 Бой шамотного кирпича (3 42 110 01 20 5)

Расчет годового образования отхода произведен в соответствии с нормативами образования отхода представленными в п. 4.72 и графиком ремонта основного оборудования (приложение 1, стр. 533-541).

Расчет годового образования отхода представлено в таблице 5.72.1

Таблица 5.72.1 – Результаты расчета годового образования отхода

Пок	Количество	капитальны шт.	х ремонтов,	Норма обра- зов. отхода,	Образование отхода, т/год			
Цех	c 18.01.2022	2023-2028	по 17.01.2029	т/кап. ре- монт	c 18.01.2022	2023-2028	по 17.01.2029	
ТЭС-2	7	7	7	1,042	7,296	7,296	7,296	
ТЭЦ-1	11	11	11	5,961	65,566	65,566	65,566	
				Итого:	72,862	72,862	72,862	

Максимальное значение годового количества образования отхода составит 72,862 т/год.

1.157 Лом кирпичной кладки от сноса и разборки зданий (8 12 201 01 20 5)

Расчет годового образования отхода произведен в соответствии с Ведомостям объемов работ по сносу зданий и сооружений, представленным в Приложении 1 на стр. 542-546. Норма образования отхода принята 100% в соответствии Правилами разработки и применения нормативов трудноустранимых потерь и отходов материалов в строительстве. РДС-82-202-96. Результаты расчета годового образования отхода представлены в таблице 5.73.1.

Таблица 5.73.1- Результаты расчета годового образования отхода

	Норма	Го	довое образ	ование отход	<u>t</u> a
Объект	образования отхода, %	2022	2023	2024-2028	по 17.01.2029
Здание трансформаторной станции ТП №4	100	316,944	316,944		
Склад известкового камня, галерея подачи извести на печи обжига	100			4,218	0,196
Здание натяжной станции конвейера	100	20,032			
Кирпичная дымовая труба ТЭС-2	100	78,019	78,019	78,019	3,633
Здание цеха глиноземоразводки	100		55,992	55,992	2,608
	Итого:	414,995	450,955	138,229	6,437

Максимальное значение годового количества образования отхода составит 450,955 т/год

1.158 Абразивные круги отработанные, лом отработанных абразивных кругов(4 56 100 01 51 5)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.74. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.74.1.

Таблица 5.74.1- Результаты расчета годового образования отхода

TI on			Годовое	образова	ние отход	а, т/год		
Цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
РМЦ	0,038	0,040	0,040	0,040	0,040	0,040	0,040	0,002
Химкорпус	0,011	0,012	0,012	0,012	0,012	0,012	0,012	0,001
Варочный цех	0,011	0,012	0,012	0,012	0,012	0,012	0,012	0,001
ТЭС-2	0,014	0,015	0,015	0,015	0,015	0,015	0,015	0,001
ТЭЦ-1	0,038	0,040	0,040	0,040	0,040	0,040	0,040	0,002
ЛПЦ	0,014	0,015	0,015	0,015	0,015	0,015	0,015	0,001
ЦРТМ	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,000
Бумажная фабрика	0,026	0,027	0,027	0,027	0,027	0,027	0,027	0,001
АТЦ	0,014	0,015	0,015	0,015	0,015	0,015	0,015	0,001
ждц	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,000
ЦРО	0,008	0,008	0,008	0,008	0,008	0,008	0,008	0,000
СБО	0,022	0,023	0,023	0,023	0,023	0,023	0,023	0,001
Итого:	0,202	0,212	0,212	0,212	0,212	0,212	0,212	0,010

Максимальное значение годового количества образования отхода составит 0,212 т/год.

1.159 Лом и отходы стальные несортированные (4 61 200 99 20 5)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.75. Результаты расчета годового образования отхода при в проведении ремонтных работ по подразделениям представлены в таблице 5.75.1.

Таблица 5.75.1- Результаты расчета

		Годовое образование отхода, т/год											
Цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029					
ЛПЦ	67,296	70,787	70,787	70,787	70,787	70,787	70,787	3,297					
Вароч- ный цех	150,851	158,676	158,676	158,676	158,676	158,676	158,676	7,390					
РСУ	3635,191	3823,76	3823,760	3823,760	3823,760	3823,760	3823,760	178,093					
Итого:	3853,338	4053,223	4053,223	4053,223	4053,223	4053,223	4053,223	188,780					

Максимальное значение годового количества образования отхода составит 4053,223 т/год.

1.160 Остатки и огарки стальных сварочных электродов (9 19 100 01 20 5)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.76. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.76.1.

Таблица 5.76.1- Результаты расчета годового образования отхода

Цех		Годовое образование отхода, т/год									
	c 18.01.2022	18.01.2022 2023 2024 2025 2026 2027 2028 по 17.01.2029									
ЛПЦ	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,000			
Химкорпус	0,010	0,01	0,010	0,010	0,010	0,010	0,010	0,000			

ТЭС-2	0,008	0,008	0,008	0,008	0,008	0,008	0,008	0,000
ЦРТМ	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,000
Бумажная фабрика	0,004	0,004	0,004	0,004	0,004	0,004	0,004	0,000
ТЭЦ-1	0,005	0,005	0,005	0,005	0,005	0,005	0,005	0,000
АТЦ	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,000
ждц	0,001	0,001	0,001	0,001	0,001	0,001	0,001	0,000
РМЦ	0,003	0,003	0,003	0,003	0,003	0,003	0,003	0,000
ЦРО	0,009	0,009	0,009	0,009	0,009	0,009	0,009	0,000
СБО	0,002	0,002	0,002	0,002	0,002	0,002	0,002	0,000
Итого:	0,044	0,046	0,046	0,046	0,046	0,046	0,046	0,002

Максимальное значение годового количества образования отхода составит 0,046 т/год

1.161 Лом и отходы, содержащие незагрязненные черные металлы в виде изделий, кусков, несортированные (4 61 010 01 20 5)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.77. Результаты расчета годового образования отхода при в проведении ремонтных работ по подразделениям представлены в таблице 5.77.1.

Таблица 5.77.1- Результаты расчета

Пот		Годовое образование отхода, т/год										
Цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029				
ЛПЦ	10,621	11,172	11,172	11,172	11,172	11,172	11,172	0,520				
АТЦ	110,107	115,819	115,819	115,819	115,819	115,819	115,819	5,394				
Варочный цех	91,349	96,088	96,088	96,088	96,088	96,088	96,088	4,475				
РСУ	2312,464	2432,419	2432,419	2432,419	2432,419	2432,419	2432,419	113,291				
Итого:	2524,542	2655,498	2655,498	2655,498	2655,498	2655,498	2655,498	123,681				

Максимальное значение годового количества образования отхода составит 2655,498

т/год

1.162 Стружка черных металлов несортированная незагрязненная (3 61 212 03 22 5) Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.78. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.78.1.

Таблица 5.78.1- Результаты расчета годового образования отхода

Пот			Годовое	образован	ие отхода,	т/год		
Цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
РМЦ	30,648	32,238	32,238	32,238	32,238	32,238	32,238	1,501
Химкорпус	2,282	2,4	2,400	2,400	2,400	2,400	2,400	0,112
Варочный цех	5,728	6,025	6,025	6,025	6,025	6,025	6,025	0,281
ТЭС-2	3,484	3,665	3,665	3,665	3,665	3,665	3,665	0,171
ТЭЦ-1	12,150	12,78	12,780	12,780	12,780	12,780	12,780	0,595
ЛПЦ	4,338	4,563	4,563	4,563	4,563	4,563	4,563	0,213
ЦРТМ	1,664	1,75	1,750	1,750	1,750	1,750	1,750	0,082
Бумажная фабрика	19,765	20,79	20,790	20,790	20,790	20,790	20,790	0,968
АТЦ	10,467	11,01	11,010	11,010	11,010	11,010	11,010	0,513
ждц	1,697	1,785	1,785	1,785	1,785	1,785	1,785	0,083
ЦРО	1,783	1,875	1,875	1,875	1,875	1,875	1,875	0,087
СБО	5,004	5,264	5,264	5,264	5,264	5,264	5,264	0,245

Итого:	99,009	104,145	104,145	104,145	104,145	104,145	104,145	4,851
--------	--------	---------	---------	---------	---------	---------	---------	-------

Максимальное значение годового количества образования отхода составит 104,145 т/год

1.163 Тормозные колодки отработанные без накладок асбестовых (9 20 31 001 52 5)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.78. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.79.1.

Таблица 5.79.1- Результаты расчета годового образования отхода

Цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
ЖДЦ	5,916	6,223	6,223	6,223	6,223	6,223	6,223	0,290
АТЦ	0,072	0,076	0,076	0,076	0,076	0,076	0,076	0,004
Итого:	5,988	6,299	6,299	6,299	6,299	6,299	6,299	0,293

Максимальное значение годового количества образования отхода составит 6,299 т/год

1.164 Лом и отходы алюминия несортированные (4 62 200 06 20 5)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.80. Результаты расчета годового образования отхода при в проведении ремонтных работ по подразделениям представлены в таблице 5.80.1.

Таблица 5.80.1- Результаты расчета

How	Годовое образование отхода, т/год										
Цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029			
Варочный цех	0,095	0,100	0,100	0,100	0,100	0,100	0,100	0,005			
РСУ	2,339	2,460	2,460	2,460	2,460	2,460	2,460	0,115			
Итого:	2,434	2,560	2,560	2,560	2,560	2,560	2,560	0,119			

Максимальное значение годового количества образования отхода составит 2,560 т/год.

1.165 Лом и отходы незагрязненные, содержащие медные сплавы в виде изделий, кусков, несортированные (4 62 100 01 20 5)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.81. Результаты расчета годового образования отхода при в проведении ремонтных работ по подразделениям представлены в таблице 5.81.1.

Таблица 5.81.1- Результаты расчета

Пот	Годовое образование отхода, т/год								
Цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029	
Варочный цех	0,010	0,011	0,011	0,011	0,011	0,011	0,011	0,001	
РСУ	0,240	0,252	0,252	0,252	0,252	0,252	0,252	0,012	
Итого:	0,250	0,263	0,263	0,263	0,263	0,263	0,263	0,012	

Максимальное значение годового количества образования отхода составит 0,263 т/год.

1.166 Ленты конвейерные, приводные ремни, утратившие потребительские свойства, незагрязненные (4 31 120 01 51 5)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.82. Результаты расчета годового образования отхода при в проведении ремонтных работ по подразделениям представлены в таблице 5.82.1.

Таблица 5.82.1- Результаты расчета

Годовое образование отхода, т/год								
Цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
ЛПЦ	93,945	98,818	98,818	98,818	98,818	98,818	98,818	4,602

СБО	0,792	0,833	0,833	0,833	0,833	0,833	0,833	0,039
Химкорпус	3,169	3,333	3,333	3,333	3,333	3,333	3,333	0,155
Варочный цех	3,169	3,333	3,333	3,333	3,333	3,333	3,333	0,155
Итого:	101,074	106,318	106,318	106,318	106,318	106,318	106,318	4,952

Максимальное значение годового количества образования отхода составит 106,318 т/год

1.167 Отходы изолированных проводов и кабелей (4 82 302 01 52 5)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.83. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.83.1.

Таблица 5.83.1- Результаты расчета годового образования отхода

II			Годово	е образов	ание отхо	ода, т/год		
Цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
ЛПЦ	0,225	0,237	0,237	0,237	0,237	0,237	0,237	0,011
Варочный цех	2,652	2,79	2,790	2,790	2,790	2,790	2,790	0,130
Химкорпус	2,652	2,79	2,790	2,790	2,790	2,790	2,790	0,130
ТЭС-2	1,571	1,653	1,653	1,653	1,653	1,653	1,653	0,077
ЦРТМ	0,074	0,078	0,078	0,078	0,078	0,078	0,078	0,004
Бум.фабрика	0,503	0,529	0,529	0,529	0,529	0,529	0,529	0,025
ТЭЦ-1	0,542	0,57	0,570	0,570	0,570	0,570	0,570	0,027
СБО	1,281	1,347	1,347	1,347	1,347	1,347	1,347	0,063
ждц	0,042	0,044	0,044	0,044	0,044	0,044	0,044	0,002
РМЦ	0,016	0,017	0,017	0,017	0,017	0,017	0,017	0,001
ЦГП	0,006	0,006	0,006	0,006	0,006	0,006	0,006	0,000
Итого:	9,565	10,062	10,062	10,062	10,062	10,062	10,062	0,469

Максимальное значение годового количества образования отхода составит 10,062 т/год.

1.168 Отходы полипропиленовой тары незагрязненной (4 34 120 04 51 5)

Расчет годового образования отхода произведен в соответствии с нормативом образования отхода определенным в п. 4.84. Результаты расчета годового образования отхода по подразделениям представлены в таблице 5.84.1.

Таблица 5.84.1- Результаты расчета годового образования отхода

Пех	Годовое образование отхода, т/год									
цех	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029		
Бум.фабрика	27,403	28,824	28,824	28,824	28,824	28,824	28,824	1,342		
XBO	0,028	0,029	0,029	0,029	0,029	0,029	0,029	0,001		
СБО	0,030	0,032	0,032	0,032	0,032	0,032	0,032	0,001		
Итого:	27,461	28,884	28,884	28,884	28,884	28,884	28,884	1,345		

Максимальное значение годового количества образования отхода составит 28,884 т/год.

Таблица 5.85.1 – Сводные данные о нормативах образования отходов и максимальном годовой количестве образования отходов (по образцу Приложения №4 МУ)

№ п/п	Наименование вида отходов по ФККО	Код по ФККО	Норматив образования отходов		Максимальное годовое количе-
			Единица измерения	Величина	ство образова- ния отходов, тонн
1	2	3	4	5	6
1	Лампы ртутные, ртутно-кварцевые, люминесцентные, утратившие по- требительские свойства	4 71 101 01 52 1	т/год	1,514	1,514
2	Отходы термометров ртутных	4 71 920 00 52 1	т/год	0,003	0,003

№ п/п	Наименование вида отходов по ФККО	Код по ФККО	Норматив образования отходов		Максимальное годовое количе-
			Единица измерения	Величина	ство образова- ния отходов, тонн
1	2	3	4	5	6
3	Аккумуляторы свинцовые отработанные неповрежденные, с электролитом	9 20 110 01 53 2	т/год	0,473	24,895
4	Химические источники тока марганцово-цинковые щелочные неповрежденные отработанные	4 82 201 11 53 2	т/год	0,007	0,007
5	Шпалы железнодорожные деревянные, пропитанные антисептическими средствами, отработанные	8 41 000 01 51 3	т/год	4	60,427
6	Шлам очистки емкостей и трубопроводов от нефти и нефтепродуктов	9 11 200 02 39 3	т/год	1,074	1,074
7	Золосажевые отложения при очистке оборудования ТЭС, ТЭЦ, котельных умеренно опасные	6 18 902 01 20 3	т/год	0,535	0,535
8	Отходы минеральных масел моторных	4 06 110 01 31 3	т/год	2,194	2,194
9	Отходы минеральных масел инду- стриальных	4 06 130 01 31 3	т/год	33,665	33,665
10	Отходы минеральных масел трансмиссионных	4 06 150 01 31 3	т/год	5,823	5,823
11	Отходы минеральных масел трансформаторных, не содержащих галогены	4 06 140 01 31 3	т/год	0,828	0,828
12	Отходы минеральных масел турбин- ных	4 06 170 01 31 3	т/год	9,107	9,107
13	Отходы минеральных масел гидравлических, не содержащих галогены	4 06 120 01 31 3	т/год	13,903	13,903
14	Фильтры очистки масла автотранспортных средств отработанные	9 21 302 01 52 3	т/год	0,055	0,055
15	Сальниковая набивка асбесто-графитовая промасленная (содержание масла 15 % и более)	9 19 202 01 60 3	т/год	0,706	0,706
16	Фильтры очистки топлива автотранспортных средств отработанные	9 21 303 01 52 3	т/год	0,069	0,069
17	Опилки и стружка древесные, загрязненные нефтью или нефтепродуктами (содержание нефти или нефтепродуктов 15% и более)	9 19 205 01 39 3	т/год	0,502	0,502
18	Всплывшие нефтепродукты из нефтеловушек и аналогичных сооружений	4 06 350 01 31 3	т/год	0,536	0,536
19	Фильтры очистки масла компрессорных установок отработанные (содержание нефтепродуктов 15% и более)	9 18 302 81 52 3	т/год	0,042	0,042
20	Фильтры очистки масла двигателей железнодорожного подвижного состава отработанные	9 22 221 05 52 3	т/год	0,966	0,966
21	Фильтры очистки топлива двигате- лей железнодорожного подвижного состава отработанные	9 22 221 07 52 3	т/год	0,004	0,004
22	Сетки сушильные и формующие полиэфирные бумагоделательных машин, утратившие потребительские свойства	3 06 121 91 51 4	т/год	2,071	2,071

№ п/п	Наименование вида отходов по ФККО	Код по ФККО	Норматив образования отходов		Максимальное годовое количе-
			Единица измерения	Величина	ство образова- ния отходов, тонн
1	2	3	4	5	6
23	Фильтры воздушные автотранспортных средств отработанные	9 21 301 01 52 4	т/год	0,122	0,122
24	Фильтры воздушные двигателей железнодорожного подвижного состава отработанные	9 22 221 02 52 4	т/год	0,105	0,105
25	Фильтры воздушные компрессорных установок в полимерном корпусе отработанные	9 18 302 66 52 4	т/год	0,001	0,001
26	Обувь кожаная рабочая, утратившая потребительские свойства	4 03 101 00 52 4	т/год	2,194	2,194
27	Отходы коры	3 05 100 01 21 4	т/год	117012,460	117012,460
28	Пыль древесная от шлифовки натуральной чистой древесины	3 05 311 01 42 4	т/год	0,005	0,005
29	Древесные отходы от сноса и раз- борки зданий	8 12 101 01 72 4	т/год	156,700	211,996
30	Осадок гашения извести при производстве известкового молока	3 46 910 01 39 4	т/год	5345,379	4788,344
31	Отходы рубероида	8 26 210 01 51 4	т/год	34,246	72,126
32	Золосажевые отложения при очистке оборудования ТЭС, ТЭЦ, котельных малоопасные	6 18 902 02 20 4	т/год	284,847	284,847
33	Пыль (порошок) абразивные от шлифования черных металлов с содержанием металла менее 50%	3 61 221 02 42 4	т/год	0,862	0,862
34	Отходы базальтового волокна и материалов на его основе	4 57 112 01 20 4	т/год	7,462	7,462
35	Резиновые перчатки, утратившие потребительские свойства, незагрязненные	4 31 141 01 20 4	т/год	1,071	1,071
36	Отходы асбеста в кусковой форме	3 48 511 01 20 4	т/год	7,894	7,894
37	Шлак сварочный	9 19 100 02 20 4	т/год	0,368	0,368
38	Отходы зачистки емкостей хранения, приготовления растворов реагентов (коагулянтов) на основе соединений алюминия	7 10 207 21 39 4	т/год	31,204	27,952
39	Смет с территории предприятия малоопасный	7 33 390 01 71 4	т/год	123,500	123,500
40	Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15%)	9 19 204 02 60 4	т/год	3,280	3,280
41	Тара из черных металлов, загрязненная лакокрасочными материалами (содержание менее 5%)	4 68 112 02 51 4	т/год	0,316	0,316
42	Покрышки пневматических шин с металлическим кордом отработанные	9 21 130 02 50 4	т/год	5,524	5,524
43	Мусор от офисных и бытовых помещений организаций несортированный (исключая крупногабаритный)	7 33 100 01 72 4	т/год	73,660	73,660
44	Мусор от сноса и разборки зданий несортированный	8 12 901 01 72 4	т/год	2045,146	3324,759

№	Наименование вида отходов по ФККО	Код по ФККО	Норматив образования отходов		Максимальное годовое количе-
Л2			Единица измерения	Величина	ство образова- ния отходов, тонн
1	2	3	4	5	6
45	Кора с примесью земли	3 05 100 02 29 4	т/год	1853,459	1853,459
46	Отходы упаковочных материалов из бумаги и картона, загрязненные неметаллическими нерастворимыми или малорастворимыми минеральными продуктами	4 05 911 31 60 4	т/год	0,393	0,393
47	Мониторы компьютерные жидко- кристаллические, утратившие потре- бительские свойства	4 81 205 02 52 4	т/год	0,111	0,111
48	Системный блок компьютера, утративший потребительские свойства	4 81 201 01 52 4	т/год	0,070	0,070
49	Принтеры, сканеры, многофункциональные устройства (МФУ), утратившие потребительские свойства	4 81 202 01 52 4	т/год	0,200	0,200
50	Клавиатура, манипулятор «мышь» с соединительными проводами, утратившие потребительские свойства	4 81 204 01 52 4	т/год	0,041	0,041
51	Зола от сжигания древесного топлива умеренно опасная	6 11 900 01 40 4	т/год	1273,598	1273,598
52	Лом футеровок печей и печного оборудования производства негашеной извести	9 12 145 41 20 4	т/год	474,502	474,502
53	Отходы минерального процесса сортирования целлюлозы при ее производстве	3 06 111 12 39 4	т/год	206,888	185,328
54	Светильники со светодиодными элементами в сборе, утратившие потребительские свойства	4 82 427 11 52 4	т/год	0,217	0,217
55	Спецодежда из хлопчатобумажного и смешанных волокон, утратившая потребительские свойства, незагрязненная	4 02 110 01 62 4	т/год	7,117	7,117
56	Отходы известняка, доломита и мела в виде порошка и пыли малоопасные	2 31 112 03 40 4	т/год	114,707	114,707
57	Отходы (шлам) при очистке сетей, колодцев хозяйственно-бытовой и смешанной канализации	7 22 800 01 39 4	т/год	0,600	0,600
58	Ткань фильтровальная из полимерных волокон, загрязненная нерастворимыми или малорастворимыми минеральными веществами	4 43 221 91 60 4	т/год	0,160	0,160
59	Осадок механической очистки нефтесодержащих сточных вод, со- держащий нефтепродукты в количе- стве менее 15%	7 23 102 02 39 4	т/год	18,763	18,763
60	Упаковка полимерная, загрязненная реагентами для производства целлюлозы	3 06 053 11 51 4	т/год	26,797	25,451
61	Осадок (ил) биологической очистки сточных вод целлюлозно-бумажного производства	3 06 851 21 32 5	т/год	1319,279	1319,279
62	Осадки механической и биологической очистки сточных вод целлю-	3 06 821 11 39 5	т/год	47406,257	47406,257

No	Наименование вида отходов по	Код по	Норматив о отхо	_	Максимальное годовое количе-
п/п	отходов по ФККО	ФККО	Единица измерения	Величина	ство образова- ния отходов, тонн
1	2	3	4	5	6
	лозно-бумажного производства и хозяйственно-бытовых сточных вод в смеси обезвоженные				
63	Осадок сточных вод мойки автомо- бильного транспорта практически неопасный	9 21 751 12 39 5	т/год	0,619	0,619
64	Отходы песчаной загрузки кипящего слоя в смеси с твердыми остатками сжигания кородревесных отходов	7 42 218 31 40 5	т/год	889,140	889,140
65	Зола от сжигания древесного топлива практически неопасная	6 11 900 02 40 5	т/год	3873,243	3873,243
66	Горбыль из натуральной чистой древесины	3 05 220 01 21 5	т/год	0,325	0,325
67	Щепа натуральной чистой древе- сины	3 05 220 03 21 5	т/год	5939,770	5939,770
68	Опилки натуральной чистой древесины	3 05 230 01 43 5	т/год	41410,601	41410,601
69	Стружка натуральной чистой древесины	3 05 230 02 22 5	т/год	0,146	0,146
70	Бой стекла	3 41 901 01 20 5	т/год	2,625	2,625
71	Бой шамотного кирпича	3 42 110 01 20 5	т/год	72,862	72,862
72	Лом кирпичной кладки от сноса и разборки зданий	8 12 201 01 20 5	т/год	414,995	450,995
73	Абразивные круги отработанные, лом отработанных абразивных кругов	4 56 100 01 51 5	т/год	0,212	0,212
74	Лом и отходы стальные несортированные	4 61 200 99 20 5	т/год	4055,091	4053,223
75	Остатки и огарки стальных сварочных электродов	9 19 100 01 20 5	т/год	0,046	0,046
76	Лом и отходы, содержащие незагрязненные черные металлы в виде изделий, кусков, несортированные	4 61 010 01 20 5	т/год	2638,978	2655,498
77	Стружка черных металлов несортированная незагрязненная	3 61 212 03 22 5	т/год	104,145	104,145
78	Тормозные колодки отработанные без накладок асбестовых	9 20 310 01 52 5	т/год	6,299	6,299
79	Лом и отходы алюминия несортированные	4 62 200 06 20 5	т/год	2,570	2,560
80	Лом и отходы незагрязненные, со- держащие медные сплавы в виде из- делий, кусков, несортированные	4 62 100 01 20 5	т/год	0,263	0,263
81	Прочие несортированные древесные отходы из натуральной чистой древесины	3 05 291 91 20 5	т/год	1707,998	1707,998
82	Ленты конвейерные, приводные ремни утратившие потребительские свойства, незагрязненные	4 31 120 01 51 5	т/год	106,318	106,318
83	Отходы изолированных проводов и кабелей	4 82 302 01 52 5	т/год	10,062	10,062
84	Отходы полипропиленовой тары незагрязненной	4 34 120 04 51 5	т/год	29,127	29,258

5.3. Сводные данные по образованию отходов производства и потребления и запрашиваемым лимитам на их размещение

Сводные данные по образованию отходов производства и потребления и запрашиваемым лимитам на их размещение представлены в таблице 5.3.1

Таблица 5.3.1

	Сведения об образов	вании отходов				
			Норматив о	бразования	Максимальное	
№	Наименование вида отходов по феде-	Код по	ОТХ	одов	годовое количе-	
строки	ральному классификационному каталогу отходов, далее- ФККО	ФККО	Единица из- мерения	Величина	ство образова- ния отходов, тонн	
A	1	2	3	4	5	
1	Лампы ртутные, ртутно-кварцевые, люминесцентные, утратившие потребительские свойства	4 71 101 01 52 1	т/год	1,514	1,514	
2	Отходы термометров ртутных	4 71 920 00 52 1	т/год	0,003	0,003	
3	Аккумуляторы свинцовые отработанные неповрежденные, с электролитом	9 20 110 01 53 2	т/год	0,473	24,895	
4	Химические источники тока марганцово-цинковые щелочные неповрежденные отработанные	4 82 201 11 53 2	т/год	0,007	0,007	
5	Шпалы железнодорожные деревянные, пропитанные антисептическими средствами, отработанные	8 41 000 01 51 3	т/год	4	60,427	
6	Шлам очистки емкостей и трубопроводов от нефти и нефтепродуктов	9 11 200 02 39 3	т/год	1,074	1,074	
7	Золосажевые отложения при очистке оборудования ТЭС, ТЭЦ, котельных умеренно опасные	6 18 902 01 20 3	т/год	0,535	0,535	
8	Отходы минеральных масел моторных	4 06 110 01 31 3	т/год	2,194	2,194	
9	Отходы минеральных масел индустриальных	4 06 130 01 31 3	т/год	33,665	33,665	
10	Отходы минеральных масел трансмиссионных	4 06 150 01 31 3	т/год	5,823	5,823	
11	Отходы минеральных масел трансформаторных, не содержащих галогены	4 06 140 01 31 3	т/год	0,828	0,828	
12	Отходы минеральных масел турбин- ных	4 06 170 01 31 3	т/год	9,107	9,107	
13	Отходы минеральных масел гидравлических, не содержащих галогены	4 06 120 01 31 3	т/год	13,903	13,903	
14	Фильтры очистки масла автотранс- портных средств отработанные	9 21 302 01 52 3	т/год	0,055	0,055	
15	Сальниковая набивка асбесто-графитовая промасленная (содержание масла 15% и более)	9 19 202 01 60 3	т/год	0,706	0,706	
16	Фильтры очистки топлива автотранспортных средств отработанные	9 21 303 01 52 3	т/год	0,069	0,069	
17	Опилки и стружка древесные, загрязненные нефтью или нефтепродуктами (содержание нефти или нефтепродуктов 15% и более)	9 19 205 01 39 3	т/год	0,502	0,502	
18	Всплывшие нефтепродукты из нефтеловушек и аналогичных сооружений	4 06 350 01 31 3	т/год	0,536	0,536	

	Сведения об образо	вании отходов і	производства	Я	
	2 3/(1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			образования	Максимальное
№ строки	Наименование вида отходов по федеральному классификационному каталогу отходов, далее- ФККО	Код по ФККО	отх Единица из- мерения	одов Величина	годовое количе- ство образова- ния отходов,
A	1	2	3	4	тонн 5
19	Фильтры очистки масла компрессорных установок отработанные (содержание нефтепродуктов 15% и более)	9 18 302 81 52 3	т/год	0,042	0,042
20	Фильтры очистки масла двигателей железнодорожного подвижного состава отработанные	9 22 221 05 52 3	т/год 0,966		0,966
21	состава отработанные		т/год	0,004	0,004
22	Сетки сушильные и формующие полиэфирные бумагоделательных машин, утратившие потребительские свойства	3 06 121 91 51 4	т/год	2,071	2,071
23	Фильтры воздушные автотранспортных средств отработанные	9 21 301 01 52 4	т/год	0,122	0,122
24	Фильтры воздушные двигателей железнодорожного подвижного состава отработанные	9 22 221 02 52 4	т/год	0,105	0,105
25	Фильтры воздушные компрессорных установок в полимерном корпусе отработанные	9 18 302 66 52 4	т/год	0,001	0,001
26	Обувь кожаная рабочая, утратившая потребительские свойства	4 03 101 00 52 4	т/год	2,194	2,194
27	Отходы коры	3 05 100 01 21 4	т/год	117012,460	117012,460
28	Пыль древесная от шлифовки натуральной чистой древесины	3 05 311 01 42 4	т/год	0,005	0,005
29	Древесные отходы от сноса и раз- борки зданий	8 12 101 01 72 4	т/год	156,700	211,996
30	Осадок гашения извести при производстве известкового молока	3 46 910 01 39 4	т/год	5345,379	4788,344
31	Отходы рубероида	8 26 210 01 51 4	т/год	34,246	72,126
32	Золосажевые отложения при очистке оборудования ТЭС, ТЭЦ, котельных малоопасные	6 18 902 02 20 4	т/год	284,847	284,847
33	Пыль (порошок) абразивные от шлифования черных металлов с содержанием металла менее 50 %	3 61 221 02 42 4	т/год	0,862	0,862
34	Отходы базальтового волокна и материалов на его основе	4 57 112 01 20 4	т/год	7,462	7,462
35	Резиновые перчатки, утратившие потребительские свойства, незагрязненные	4 31 141 01 20 4	т/год	1,071	1,071
36	Отходы асбеста в кусковой форме	3 48 511 01 20 4	т/год	7,894	7,894
37	Шлак сварочный	9 19 100 02 20 4	т/год	0,368	0,368
38	Отходы зачистки емкостей хранения, приготовления растворов реагентов (коагулянтов) на основе соединений алюминия	7 10 207 21 39 4	т/год	31,204	27,952
39	Смет с территории предприятия малоопасный	7 33 390 01 71 4	т/год	123,500	123,500

	Сведения об образов	производства и потребления					
	_		Норматив	образования	Максимальное годовое количе- ство образования отходов, тонн		
№	Наименование вида отходов по феде-	Код по	отх	одов			
строки	ральному классификационному ка- талогу отходов, далее- ФККО	ФККО	Единица из- мерения	Величина			
A	1	2	3	4	5		
40	Обтирочный материал, загрязненный нефтью или нефтепродуктами (содержание нефти или нефтепродуктов менее 15%)	9 19 204 02 60 4	т/год	3,280	3,280		
41	Тара из черных металлов, загрязненная лакокрасочными материалами (содержание менее 5 %)	4 68 112 02 51 4	т/год	0,316	0,316		
42	Покрышки пневматических шин с металлическим кордом отработанные	9 21 130 02 50 4	т/год	5,524	5,524		
43	Мусор от офисных и бытовых помещений организаций несортированный (исключая крупногабаритный)	7 33 100 01 72 4	т/год	73,660	73,660		
44	Мусор от сноса и разборки зданий несортированный	8 12 901 01 72 4	т/год	2045,146	3324,759		
45	Кора с примесью земли	3 05 100 02 29 4	т/год	1853,459	1853,459		
46	Отходы упаковочных материалов из бумаги и картона, загрязненные неметаллическими нерастворимыми или малорастворимыми минеральными продуктами	4 05 911 31 60 4	т/год	0,393	0,393		
47	Мониторы компьютерные жидко- кристаллические, утратившие потре- бительские свойства	4 81 205 02 52 4	т/год	0,111	0,111		
48	Системный блок компьютера, утративший потребительские свойства	4 81 201 01 52 4	т/год	0,070	0,070		
49	Принтеры, сканеры, многофункциональные устройства (МФУ), утратившие потребительские свойства	4 81 202 01 52 4	т/год	0,200	0,200		
50	Клавиатура, манипулятор «мышь» с соединительными проводами, утратившие потребительские свойства	4 81 204 01 52 4	т/год	0,041	0,041		
51	Зола от сжигания древесного топлива умеренно опасная	6 11 900 01 40 4	т/год	1273,598	1273,598		
52	Лом футеровок печей и печного оборудования производства негашеной извести	9 12 145 41 20 4	т/год	474,502	474,502		
53	Отходы минерального процесса сортирования целлюлозы при ее производстве	3 06 111 12 39 4	т/год	206,888	185,328		
54	Светильники со светодиодными элементами в сборе, утратившие потребительские свойства	4 82 427 11 52 4	т/год	0,217	0,217		
55	Спецодежда из хлопчатобумажного и смешанных волокон, утратившая потребительские свойства, незагрязненная	4 02 110 01 62 4	т/год	7,117	7,117		
56	Отходы известняка, доломита и мела в виде порошка и пыли малоопасные	2 31 112 03 40 4	т/год	114,707	114,707		
57	Отходы (шлам) при очистке сетей, колодцев хозяйственно-бытовой и смешанной канализации	7 22 800 01 39 4	т/год	0,600	0,600		

	Сведения об образовании отходов производства и потребления									
	•	, ,		образования	Максимальное					
	Наименование вида отходов по феде-	Код по	отх	одов	годовое количе-					
строки	ральному классификационному ка- талогу отходов, далее- ФККО	ФККО	Единица из- мерения	Величина	ство образова- ния отходов,					
			_		тонн					
A	1	2	3	4	5					
58	Ткань фильтровальная из полимерных волокон, загрязненная нерастворимыми или малорастворимыми минеральными веществами	4 43 221 91 60 4	т/год	0,160	0,160					
59	Осадок механической очистки нефтесодержащих сточных вод, содержащий нефтепродукты в количестве менее 15%	7 23 102 02 39 4	т/год	18,763	18,763					
60	Упаковка полимерная, загрязненная реагентами для производства целлюлозы	3 06 053 11 51 4	т/год	26,797	25,451					
61	Осадок (ил) биологической очистки сточных вод целлюлозно-бумажного производства	3 06 851 21 32 5	т/год	1319,279	1319,279					
62	Осадки механической и биологической очистки сточных вод целлюлозно-бумажного производства и хозяйственно-бытовых сточных вод в смеси обезвоженные	3 06 821 11 39 5	т/год	47406,257	47406,257					
63	Осадок сточных вод мойки автомо- бильного транспорта практически неопасный	9 21 751 12 39 5	т/год	0,619	0,619					
64	Отходы песчаной загрузки кипящего слоя в смеси с твердыми остатками сжигания кородревесных отходов	7 42 218 31 40 5	т/год	889,140	889,140					
65	Зола от сжигания древесного топлива практически неопасная	6 11 900 02 40 5	т/год	3873,243	3873,243					
66	Горбыль из натуральной чистой древесины	3 05 220 01 21 5	т/год	0,325	0,325					
67	Щепа натуральной чистой древе- сины	3 05 220 03 21 5	т/год	5939,770	5939,770					
68	Опилки натуральной чистой древе- сины	3 05 230 01 43 5	т/год	41410,601	41410,601					
69	Стружка натуральной чистой древесины	3 05 230 02 22 5	т/год	0,146	0,146					
70	Бой стекла	3 41 901 01 20 5	т/год	2,625	2,625					
71	Бой шамотного кирпича	3 42 110 01 20 5	т/год	72,862	72,862					
72	Лом кирпичной кладки от сноса и разборки зданий	8 12 201 01 20 5	т/год	414,995	450,995					
73	Абразивные круги отработанные, лом отработанных абразивных кругов	4 56 100 01 51 5	т/год	0,212	0,212					
74	Лом и отходы стальные несортированные	4 61 200 99 20 5	т/год	4055,091	4053,223					
75	Остатки и огарки стальных сварочных электродов	9 19 100 01 20 5	т/год	0,046	0,046					
76	Лом и отходы, содержащие незагрязненные черные металлы в виде изделий, кусков, несортированные	4 61 010 01 20 5	т/год	2638,978	2655,498					
77	Стружка черных металлов несортированная незагрязненная	3 61 212 03 22 5	т/год	104,145	104,145					

	Сведения об образов	вании отходов і	производства	и потреблени	Я
№	Наименование вида отходов по феде-	Код по	Норматив с	образования одов	Максимальное годовое количе-
строки	ральному классификационному каталогу отходов, далее- ФККО	ФККО	Единица из- мерения	Величина	ство образова- ния отходов, тонн
A	1	2	3	4	5
78	Тормозные колодки отработанные без накладок асбестовых	9 20 310 01 52 5	т/год	6,299	6,299
79	Лом и отходы алюминия несортированные	4 62 200 06 20 5	т/год	2,570	2,560
80	Лом и отходы незагрязненные, содержащие медные сплавы в виде изделий, кусков, несортированные	4 62 100 01 20 5	т/год	0,263	0,263
81	Прочие несортированные древесные отходы из натуральной чистой древесины	3 05 291 91 20 5	т/год	1707,998	1707,998
82	Ленты конвейерные, приводные ремни утратившие потребительские свойства, незагрязненные	4 31 120 01 51 5	т/год	106,318	106,318
83	Отходы изолированных проводов и кабелей	4 82 302 01 52 5	т/год	10,062	10,062
84	Отходы полипропиленовой тары незагрязненной	4 34 120 04 51 5	т/год	29,127	29,258

Продолжение таблицы

		Отходы, передаваемые	для размет	цения другим и	індивидуал	тьным пред	дпринимат	елям, юрид	дическим л	ицам	
		Номер объекта			Ли	миты на р	азмещение	отходов, т	онн		
		размещения отхо-]	В том числ	е по годам	, с указани	ем даты на	чала и дат	ы окончан	ия
№ строки	Наименование объекта размещения отходов	дов в государ- ственном реестре объектов размеще- ния отходов, далее -ГРОРО	Всего	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
A	6	7	8	9	10	11	12	13	14	15	16
1	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
2	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
3	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
4	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
5	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
6	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
7	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
8	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
9	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
10	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
11	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
12	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
13	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
14	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
15	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
16	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
17	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
18	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
19	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
20	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
21	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
22	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
23	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
24	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
25	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0

		Отходы, передаваемые	е для размен	цения другим и	ндивидуа л	тьным пред	дпринимат	елям, юрид	дическим л	іицам	
		Номер объекта			Ли	миты на р	азмещение	отходов, т	онн		
		размещения отхо-			В том числ	е по годам	, с указани	ем даты на	чала и дат	ы окончан	ия
№ строки	Наименование объекта размещения отходов	дов в государ- ственном реестре объектов размеще- ния отходов, далее -ГРОРО	Всего	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
A	6	7	8	9	10	11	12	13	14	15	16
26	Специально обору- дованный объект за- хоронения отходов ТБО	№10-00051-3-00592- 250914	15,352	2,086	2,194	2,194	2,194	2,194	2,194	2,194	0,102
27	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
28	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
29	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
30	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
31	Специально обору- дованный объект за- хоронения отходов ТБО	№10-00051-3-00592- 250914	320,659	38,297	72,126	72,126	34,246	34,246	34,246	34,246	1,126
32	Специально обору- дованный объект за- хоронения отходов ТБО	№10-00051-3-00592- 250914	1993,149	270,800	284,847	284,847	284,847	284,847	284,847	284,847	13,267
33	Специально обору- дованный объект за- хоронения отходов ТБО	№10-00051-3-00592- 250914	6,032	0,819	0,862	0,862	0,862	0,862	0,862	0,862	0,040
34	Специально обору- дованный объект за- хоронения отходов ТБО	№10-00051-3-00592- 250914	52,214	7,094	7,462	7,462	7,462	7,462	7,462	7,462	0,348
35	Специально обору- дованный объект за- хоронения отходов ТБО	№10-00051-3-00592- 250914	7,494	1,018	1,071	1,071	1,071	1,071	1,071	1,071	0,050

	(Отходы, передаваемы	е для размец	цения другим і	индивидуал	тьным пред	цпринимат	елям, юрид	дическим л	іицам	
		Номер объекта			Ли	миты на р	азмещение	отходов, т	онн		
		размещения отхо-		В том числе по годам, с указанием даты начала и даты окончания							
№ строки	Наименование объекта размещения отходов	дов в государ- ственном реестре объектов размеще- ния отходов, далее -ГРОРО	Всего	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
A	6	7	8	9	10	11	12	13	14	15	16
36	Специально оборудованный объект захоронения отходов ТБО	№10-00051-3-00592- 250914	55,236	7,505	7,894	7,894	7,894	7,894	7,894	7,894	0,368
37	Специально обору- дованный объект за- хоронения отходов ТБО	№10-00051-3-00592- 250914	2,575	0,350	0,368	0,368	0,368	0,368	0,368	0,368	0,017
38	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
39	Специально обору- дованный объект за- хоронения отходов ТБО	№10-00051-3-00592- 250914	864,162	117,410	123,500	123,500	123,500	123,500	123,500	123,500	5,752
40	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
41	Специально обору- дованный объект за- хоронения отходов ТБО	№10-00051-3-00592- 250914	2,211	0,300	0,316	0,316	0,316	0,316	0,316	0,316	0,015
42	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
43	Специально обору- дованный объект за- хоронения отходов ТБО	№10-00051-3-00592- 250914	515,418	70,027	73,660	73,660	73,660	73,660	73,660	73,660	3,431
44	Специально обору- дованный объект за- хоронения отходов ТБО	№10-00051-3-00592- 250914	17753,895	2045,146	3324,759	2454,220	2454,220	2454,220	2454,220	2454,220	112,890
45	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0

		Отходы, передаваемые	для размец	цения другим и	індивидуал	іьным пред	дпринимат	елям, юрид	дическим л	ицам	
		Номер объекта			Ли	миты на р	азмещение	отходов, т	онн		
		размещения отхо-		-					чала и дат	ы окончан	ия
№ строки	Наименование объекта размещения отходов	дов в государ- ственном реестре объектов размеще- ния отходов, далее -ГРОРО	Всего	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
A	6	7	8	9	10	11	12	13	14	15	16
46	Специально обору- дованный объект за- хоронения отходов ТБО	№10-00051-3-00592- 250914	2,750	0,374	0,393	0,393	0,393	0,393	0,393	0,393	0,018
47	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
48	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
49	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
50	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
51	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
52	Специально обору- дованный объект за- хоронения отходов ТБО	№10-00043-3-00592- 250914	3320,214	451,102	474,502	474,502	474,502	474,502	474,502	474,502	22,100
53	Специально обору- дованный объект за- хоронения отходов ТБО	№10-00051-3-00592- 250914	1296,788	176,189	185,328	185,328	185,328	185,328	185,328	185,328	8,632
54	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
55	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
56	Специально обору- дованный объект за- хоронения отходов ТБО	№10-00043-3-00592- 250914	802,635	109,050	114,707	114,707	114,707	114,707	114,707	114,707	5,343
57	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
58	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
59	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
60	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
61	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
62	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
63	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0

		Отходы, передаваемы	е для размец	цения другим и	индивидуал	тьным пре,	дпринимат	елям, юрид	дическим л	іицам	
		Номер объекта			Ли	миты на р	азмещение	отходов, т	онн		
		размещения отхо-			В том числ	е по годам	, с указани	ем даты на	чала и дат	ы окончан	ия
№ строки	Наименование объекта размещения отходов	дов в государ- ственном реестре объектов размеще- ния отходов, далее -ГРОРО	Всего	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029
A	6	7	8	9	10	11	12	13	14	15	16
64	Специально обору- дованный объект за- хоронения отходов ТБО	№10-00051-3-00592- 250914	6221,544	845,292	889,140	889,140	889,140	889,140	889,140	889,140	41,412
65	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
66	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
67	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
68	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
69	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
70	Специально обору- дованный объект за- хоронения отходов ТБО	№10-00051-3-00592- 250914	18,368	2,496	2,625	2,625	2,625	2,625	2,625	2,625	0,122
71	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
72	Специально обору- дованный объект за- хоронения отходов ТБО	№10-00051-3-00592- 250914	1563,532	414,995	450,955	138,229	138,229	138,229	138,229	138,229	6,437
73	Специально обору- дованный объект за- хоронения отходов ТБО	№10-00051-3-00592- 250914	1,483	0,202	0,212	0,212	0,212	0,212	0,212	0,212	0,010
74	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
75	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
76	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
77	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
78	Специально обору- дованный объект за- хоронения отходов ТБО	№10-00051-3-00592- 250914	44,076	5,988	6,299	6,299	6,299	6,299	6,299	6,299	0,293

	(Отходы, передаваемые	е для размец	цения другим и	ндивидуал	іьным пред	дпринимат	елям, юрид	дическим л	ицам			
		Номер объекта	Лимиты на размещение отходов, тонн										
3.0		размещения отхо-		В том числе по годам, с указанием даты начала							ла и даты окончания		
№ строки	Наименование объекта размещения отходов	дов в государ- ственном реестре объектов размеще-	Всего	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029		
		ния отходов, далее -ГРОРО											
A	6	7	8	9	10	11	12	13	14	15	16		
79	нет	=	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
80	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
81	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
82	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
83	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
84	нет	=	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		

Продолжение таблицы

	Отходы, размещаемые на самостоятельно эксплатируемых (собственных) объектах размещения отходов												
№	Наименование объекта размеще- ния отходов	Номер объекта размещения отходов в Всег ГРОРО	Лимиты на размещение отходов, тонн										
строки			D	В том числе по годам, с указанием даты начала и даты окончания									
			Всего	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029		
A	17	18	19	20	21	22	23	24	25	26	27		
1	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
2	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
3	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
4	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
5	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
6	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
7	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
8	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
9	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
10	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
11	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
12	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
13	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
14	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		

	Отходы, размещаемые на самостоятельно эксплатируемых (собственных) объектах размещения отходов												
№	Наименование объекта размеще- ния отходов	Номер объекта	Лимиты на размещение отходов, тонн										
л <u>ч</u> строки		размещения		В том числе по годам, с указанием даты начала и даты окончан									
		отходов в ГРОРО	Всего	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029		
A	17	18	19	20	21	22	23	24	25	26	27		
15	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
16	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
17	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
18	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
19	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
20	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
21	нет	=	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
22	нет	=	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
23	нет	=	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
24	нет	=	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
25	нет	=	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
26	нет	=	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
27	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
28	нет	=	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
29	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
30	Илонакопитель	№ 10-00002-X- 00592-250914	33505,289	4552,206	4788,344	4788,344	4788,344	4788,344	4788,344	4788,344	223,019		
31	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
32	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
33	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
34	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
35	нет	=	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
36	нет	=	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
37	нет	=	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
38	Илонакопитель	№ 10-00002-X- 00592-250914	195,587	26,574	27,952	27,952	27,952	27,952	27,952	27,952	1,302		
39	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
40	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
41	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
42	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
43	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
44	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
45	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		

	Отходы, размещаемые на самостоятельно эксплатируемых (собственных) объектах размещения отходов												
№	Наименование	Номер объекта размещения отходов в ГРОРО	Лимиты на размещение отходов, тонн										
строки	объекта размеще-		_	В том числе по годам, с указанием даты начала и даты окончания									
. <u>.</u>			Всего	c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029		
A	17	18	19	20	21	22	23	24	25	26	27		
46	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
47	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
48	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
49	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
50	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
51	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
52	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
53	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
54	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
55	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
56	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
57	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
58	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
59	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
60	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
61	Илонакопитель	№ 10-00002-X- 00592-250914	9231,339	1254,219	1319,279	1319,279	1319,279	1319,279	1319,279	1319,279	61,446		
62	Илонакопитель	№ 10-00002-X- 00592-250914	331713,919	45068,414	47406,257	47406,257	47406,257	47406,257	47406,257	47406,257	2207,963		
63	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
64	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
65	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
66	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
67	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
68	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
69	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
70	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
71	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
72	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
73	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
74	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
75	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		
76	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0		

	Отходы, размещаемые на самостоятельно эксплатируемых (собственных) объектах размещения отходов											
№	Наименование объекта размеще- ния отходов	Номер объекта размещения отходов в ГРОРО	Лимиты на размещение отходов, тонн									
строки			Всего	В том числе по годам, с указанием даты начала и даты окончания								
1				c 18.01.2022	2023	2024	2025	2026	2027	2028	по 17.01.2029	
A	17	18	19	20	21	22	23	24	25	26	27	
77	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
78	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
79	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
80	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
81	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
82	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
83	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
84	нет	-	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	

Раздел VI. Проект программы производственного экологического контроля

Проект программы производственного экологического контроля, разработанный в соответствии с требованиями к содержанию программы производственного экологического контроля, порядка и сроков представления отчета об организации и о результатах осуществления производственного экологического контроля, утвержденными приказом Минприроды России от 28.02.2018 N 74 (зарегистрирован Минюстом России 03.04.2018, регистрационный N 50598) представлен в Приложении 3 к данной заявке.

Раздел VII. Информация о наличии положительного заключения государственной экологической экспертизы материалов обоснования комплексного экологического разрешения или проектной документации объектов капитального строительства, относящихся в соответствии с законодательством в области охраны окружающей среды к объектам I категории

Заключения государственной экологической экспертизы отсутствуют.

Раздел VII.I. Утвержденные квоты выбросов

В соответствии с Федеральным законом № 195 от 26.07.2019 «О проведении эксперимента по квотированию выбросов загрязняющих веществ и внесении изменений в отдельные законодательные акты Российской Федерации в части снижения загрязнения атмосферного воздуха», проведение эксперимента по квотированию выбросов, проводится на территориях городских округов Братска, Красноярска, Липецка, Магнитогорска, Медногорска, Нижнего Тагила, Новокузнецка, Норильска, Омска, Челябинска, Череповца и Читы. Утвержденные квоты выбросов для АО «Сегежский ЦБК» отсутствуют.

Раздел VIII. Иная информация

Перечень приложений к Заявке:

Приложение 1 - Проект нормативов допустимых выбросов

Приложение 2 – Проект нормативов допустимых сбросов

Приложение 3 – Проект нормативово образования отходов и лимитов на их размещение

Приложение 4 – Программа производственного экологического контроля

Приложение 5 – Программа повышения экологической эффективности, уведомление об утверждении ППЭЭ

Приложение 6 – Отчет по разработке технологических нормативов выбросов и сбросов

Приложение 7 – Отчет по инвентаризации стационарных источников и выбросов вредных (загрязняющих) веществ в атмосферный воздух

Заявка составлена на 232 листах.

Количество приложений: 7, на 3492 листах и 4 файла exel

Уполномоченное контактное лицо:

— должность, фамилия, имя, отчество (при наличии), номер телефона, факса, адрес электронной почты

Генеральный директор АО «Сегежский ЦБК»
Поделенюк П.П.

рарекм М.П. (при наличии)

2022 г.